
1

Introduction to MATLAB

for signal processing

1.1 Setup and Documentation

MATLAB is a high-level programming language utilised in the different

areas of numerical computing, it includes both a command line interface and a

script interpreter. The language is most efficiently used when solutions to

various problems are implemented in the form of matrix computations.

Moreover, it is predominantly used for numeric analysis, signal processing and

graphical representations in the field of engineering disciplines.

MATLAB is a proprietary software solution. To install it, access the link

at: https://www.mathworks.com/help/install/install-products.html and select the

MATLAB product that you intend to install. Because the language falls under

proprietary software, installing it will require a license which is either bought on

an individual basis or is provided to you by a university/institution.

Documentation for programming with MATLAB can be found at the

following link: https://www.mathworks.com/help/MATLAB/.

1.2 Short Introduction to Mathematical Processing

There are two types of MATLAB programs:

 Scripts, which consist of sequences of commands that use

predefined MATLAB functions;

 User-defined functions, which have a specific number of input

parameters and include the operations associated to processing

these parameters, the final results being returned as output

parameters.

When opening MATLAB, the path to the current directory (the working

directory) is displayed, together with the following 4 windows (Figure 1):

 The Command Window, where instructions are typed and

executed in real time;

 The Workspace, where the currently defined variables can be

observed;

 The Current Folder, where files can eventually be saved;

 The Script Editor, with which scripts can be added to the working

directory. All of the commands written in the editor can be

executed successively (by pressing F5). Alternatively, only the

selected commands in the editor can be executed (by pressing F9).

https://www.mathworks.com/help/install/install-products.html
https://www.mathworks.com/help/matlab/

2

If the description above does not match what is displayed when opening

MATLAB, you can proceed as indicated in Figure 2, by changing the layout to

its default configuration.

Figure 1 MATLAB Interface

Figure 2 Default layout

3

1.3 Basic MATLAB Functions

Table 1.1 lists the main functions and parameters that are available in

MATLAB, together with their descriptions and certain examples.

Table 1.1 Basic MATLAB Functions

Function/Parameter Description and Examples

help function_name
Function used for providing documentation on the usage

of other MATLAB functions

ans
The default name that is given to the result of an

operation executed in the workspace or the command

window

pi The value of the “pi” constant

Inf,
NaN

Infinity

Undefined value error — Not a Number

+, -, *, /, ^,

The addition, subtraction, multiplication, division and

exponentiation of numbers, vectors or matrices

Example:

A = [1 2 3], B = [4 5 6]’
A*B = 32

<, <=, >, >=, ==, ~=
The comparison operators:

“lower than”, “lower or equal to”, “greater than”,

“greater or equal to”, “equal” and “not equal”

&, | , ~ AND, OR, NOT logical operators

i, j, 1i, 1j √

abs(z)

angle(z)

real(z)

imag(z)

The magnitude (r), phase (θ, in radians), real part (a) and

the imaginary part (b) of a complex number z:

Example:

z1 = 7;
z2 = -7;
z3 = 1i * 7;
z4 = -1i * 7;

real(z1), real(z2), real(z3), real(z4)
imag(z1), imag(z2), imag(z3), imag(z4)
abs(z1), abs(z2), abs(z3), abs(z4)
angle(z1),angle(z2), angle(z3), angle(z4)
% radians

4

cos(x), sin(x), tan(x) Cosine, sine and tangent functions of the angle x

acos(x), asin(x),
atan(x)

Inverses of the cosine, sine and tangent functions, in

radians

deg2rad(x), rad2deg(x)
Conversion of an angle x, from degrees to radians and

from radians to degrees, respectively

exp(x), log(x), log10(x)
Exponential function, natural logarithm and base-10

logarithm

ceil(x)

floor(x)

round(x)

Rounding x to the next whole number, rounding to

the previous whole number and rounding to the nearest

whole number

Example:

floor(2.6) = 2
ceil(2.6) = 3
round(2.6) = 3

A.*B

Element-wise multiplication of 2 matrices or vectors

A and B

Example:

A = [1 2 3], B = [4 5 6]
A.*B = [4 10 18]

A = [7 8 9]; % line vector
B = [10; 20; 30]; % column vector
z2 = A .* A
z3 = A .* B
z4 = B .* B

A = [1 2 3; 4 5 6] % 2 x 3 matrix
B = [10, 20, 30; 40, 50, 60] % 2x3 matrix
A.*B

A./B
Element-wise division of 2 matrices or vectors

A and B

A.^B
Element-wise exponentiation of 2 matrices or vectors

A and B

A’

A.’

Transpose and complex-conjugate of a matrix A

Transpose of a matrix A

5

conj(A)

Complex conjugate of a matrix A

x=start:step:stop

Generation of a vector x with its first element start, its

last element stop, having its elements evenly spaced by
step

Example:

x=linspace(start,stop,n)

Generation of a vector x consisting of n evenly spaced

out elements, starting from start and ending with stop

Example:

A=[] An empty matrix

A=[x1;x2]

A matrix whose lines are the x1 and x2 vectors

Example:

A=[x1c, x2c]

A matrix whose columns are the x1c and x2c vectors (by

concatenation)

Example:

ones(N,M)

zeros(N,M)

eye (N,M)

N rows, M columns matrix, full of ones;

N rows, M columns matrix, full of zeroes;

N rows, M columns matrix, all elements null except for

6

the main diagonal which consists of ones

Example:
eye(4) = eye(4,4)

rand(N,M)

randn(N,M)

randi([min,max],N,M)

N rows, M columns matrix, containing random values in

the interval (0,1), according to the uniform distribution

(no value is more likely to occur than other values)

N rows, M columns matrix, containing random values

corresponding to the Gaussian distribution with a null

mean and a standard deviation of 1

N rows, M columns matrix, containing random integer

values, according to the uniform distribution on the

interval (min, max)

A(i,j)

The element found in the matrix A at line i and column j

A(i,:)

Line i of matrix A

A(i:j,:)

Lines i through j of matrix A

A(i:k:j,:)

Lines i, i+k, i+2k,…, j of matrix A

7

A([i,j,k],:)

Only the lines i,j,k of matrix A

A(:,j)

Column j of matrix A

A(:,i:j)

Columns i through j of matrix A

A(:,i:k:j)

Columns i, i+k, i+2k,…, j of matrix A

A(:,[i,j,k])

Only the columns i,j,k of matrix A

size(A)

Number of lines and respectively columns of matrix A
A = []
size(A)
ans =

0 0
A = 72
size(A)
ans =

1 1
A = randn(3,6)
size(A)
ans =
 3 6

8

length(x)

Number of lines/columns of the x vector
A = []
length(A)
ans =
 0
A = 72
length(A)
ans =
 1
A = randn(3,6)
length(A) % largest dimension
ans =
 6

mean(x), sum(x), min(x),
max(x)

Mean, sum, minimum value and maximum value of

the x vector

find(x) or find(x~=0)

find(condition)

Returns the positions inside the x vector that contain

values that are non-null or that satisfy a given condition:

find(x) or find(x~=0)

find(x>5)

x(find(x)) or x(x~=0)

find(condition)

Returns the values inside the x vector that are non-null or

that satisfy a given condition:

x(find(x)) or x(x~=0)

for i=start:step:stop
 commands
end

“For” loop
x = [7 8 9]; % line
y = [10; 20; 30]; % column
r = 0; % run a multiply-accumulate operation
for index=1:length(y)
 r = r + x(index)*y(index);
end
r % 500

if condition
 commands
else/elseif
 commands
end

“If/else/elseif” conditional statements

while (condition)
 commands
end

“While” loop

9

plot(x,y)

stem(x,y)

Continuous graphical representation of the points given

by the x and y vectors (using linear interpolation)

Discrete graphical representation (segments) of the points

given by the x and y vectors

Figure Initialising a figure before plotting a graph

grid Display a grid on the plot

xlabel(‘text’),
ylabel(‘text’)
title(‘text’)

Set the Ox and Oy axis titles, respectively

Set the title of a figure

clear, clc, clf, close
all

Clearing all variables stored in the memory, clearing the

command line history, closing the currently selected

figure, closing all figures

Exercises

Create a working directory (on the Desktop). Copy the path of this

directory in MATLAB. Then create a new script file sand save it in the current

directory.

Generate a square matrix A with 10 rows and 10 columns, which contains

random integer values according to a uniform distribution on the interval 1:20.

1. Create new square matrices, each with 10 rows and 10 columns,

starting from matrix A so that they contain:

a. Only the even elements of A;

b. Only the elements on A’s main diagonal.

2. Generate a vector of complex numbers whose real part consists of the

2
nd

 row of matrix A, and its imaginary part consists of the 4
th
 column of matrix

A. Determine:

a. The vector that contains the magnitudes of the elements of the

complex number vector and the vector containing the phases of

the elements of the complex number vector;

b. The sum of the elements of the element-wise product of the

complex numbers vector with its conjugate (try to achieve the

desired sum without using a FOR loop).

3. The min, max, sum and mean functions can be used on both matrices

and vectors. When used on matrices, they can act on specific rows or columns.

Additionally, the min and max functions can return the index of the

minimum/maximum value that was found.

a. Determine the maximum value of each column of matrix A;

b. Norm each column of matrix A with respect to the maximum

values calculated in point a.;

c. Determine the maximum global value and fins its position in the

matrix A.

10

Examples

1. Given two complex numbers, z1 and z2:

a. Display the real and imaginary part of z1 and z2;

b. Calculate the real number a, represented by the real part of the sum

between z1 and the conjugated z2;

c. Calculate the angle represented by the sum of angles corresponding

to z1 and z2 in the complex plane and convert the value to degrees;

d. Calculate the natural logarithm of number a

Example of command usage (exercise solution):

clear all; clf
z1 = 3 + j*5;
z2 = -9 + 3*j;
z1real = real(z1);
z1imaginary = imag(z1);
a = real(z1+conj(z2));
SumAngRadians = angle(z1) + angle(z2);
SumAngDeg = SumAngRadians*180/pi;
NatLog = log(a);

1.4 Generating Signals in MATLAB

In MATLAB, a signal is represented by a vector (for one-dimensional

signals), a matrix (for two-dimensional signals), or a sequence of matrices (in

case 3 or more dimensions are needed). These data structures contain the values

that are obtained by sampling continuous signals, the sampling process may

depend on either time or two spatial variables (i.e.: an image).

1.4.1 Harmonic Signals

The sinusoidal signal (sine wave) is defined as follows:

Where: is the angular frequency of the signal,

 is the frequency of the signal,

 is the time variable of the sine function.

11

 The code below can be used to generate and visualize a 10Hz sinusoidal

signal:
close all
clc
clear

% frequency in Hz
f0 = 10;
omega0= 2*pi*f0;
step = 0.001;
% Tmax = 500 ms
T_max= 500*10^-3;
% obtaining the time vector
t = 0:step:T_max;
% obtaining the signal as a function of time
x = sin(omega0*t);

figure (1), plot (t, x), grid;
xlabel('Time [s]');
ylabel('Amplitude');
title('x = sin(omega0*t)');

As seen above, the moments of time for which the sine function was

evaluated were defined in the first place, as follows:

t = 0:step:T_max;

It is important that the step value is small enough for the plot to be done

correctly (smaller step value — higher resolution, less interpolation). Thus, we

considered the step to be 0.001. After executing the code, the image in Figure 3

is obtained:

Figure 3. Sinusoidal signal

12

Exercises:

1. What happens to the plot’s precision when the step value becomes

0.01?

2. What happens to the plot’s precision when the frequency value

becomes 100Hz?

Hint: F0< FNyquist = Fs/2

 Ts = step = 1/Fs

3. Display the previous harmonic signal by marking intermediate points

with "o". What operation does the plot function perform?

figure(1), plot(t,x,'o-'), grid

4. Plot the following signals:

 [] (

)

 (

)

 [] | (

) (

)|

 [] (

)

1.4.2 Square Wave Signals

Periodic square wave signals can be generated by two methods:

 With the help of the square function for the direct creation of the

periodic signal;

 Using the rectpulse function to create a single rectangle, which is

then turned periodic by successive concatenation.

The code below can be used to generate and visualize rectangular signals

created by the two previously mentioned methods:

clc
clear all
close all

step = 0.0001;
tmin=-5;
tmax=5;
t1 = tmin:step:tmax;
frecv=1;
x1 = square(2*pi*frecv*t1);

t2max=0.5;
t2min=-0.5;

13

t2p = t2min:step:t2max-step;
x2p = rectpuls(t2p, 0.5);

no_periods=10;
x2=[];
for i=1:no_periods
 x2=[x2,x2p];
end
t2 = no_periods*t2min:step:no_periods*t2max-step;
x3 = x2 *2 - 1;
size(x2p)
size(x2)
size(t2)

figure
subplot(4,1,1), plot(t2p,x2p)
xlabel('Time [s]'), ylabel(‘Signal Level’), grid
subplot(4,1,2), plot(t1,x1)
xlabel('Time [s]'), ylabel(‘Signal Level’), grid
subplot(4,1,3), plot(t2,x2)
xlabel('Time [s]'), ylabel(‘Signal Level’), grid
subplot(4,1,4), plot(t2,x3)
xlabel('Time [s]'), ylabel(‘Signal Level’), grid

After executing the code, the plot in Figure 4 is obtained:

Figure 4. Square signals

1.4.3 Triangle Wave Signals

Repeat the previous exercise to generate and visualize triangular signals

using the tripulse and sawtooth(t,0.5) functions.

14

1.5 Defining Functions in MATLAB

In MATLAB, functions are defined through the following syntax:

function [y1,y2,…yn]=function_name(x1,x2,…,xn)

Where: x1,x2,…,xn are the input parameters,

 [y1,y2,…,yn] is the vector of output parameters,

obtained by processing the input parameters.

For instance, the function call [M,N] = size(X) takes the matrix X as an

input parameter and, through certain processes described by the size()

function, returns a vector with 2 elements:

 First element: the number of lines M;

 Second element: the number of columns N.

Functions are essential for modularising complex programs. By using

functions, you can turn a script with a large number of statements into a more

organized program consisting of several functions defined in separate files. This

approach to code organization allows you to reuse portions of code, thus

contributing to more efficient and maintainable development.

When you create your own functions in MATLAB, you can do this by

creating new files with the .m extension in the directory where you develop

your main script. It is preferable that these new files have the same name as the

name of the respective function.

Any .m file that defines a function begins with the syntax:

[y1,y2,…yn]=function_name(x1,x2,…,xn)

After this syntax, it is recommended to provide explanations for each

output parameter (y1, y2, …) and for each input parameter (x1, x2, …), as well

as a short, human-readable description of the processes carried out by the

function.

Example

Define the step function using MATLAB, given its expression:

 {

By using the time-translation property, this can be written as:

 {

As shown below, a MATLAB function can be created for defining unit-

step discrete sequences, having a finite temporal basis:

15

function [y,n] = treapta(ni,ns,n0)
 % Discrete time step function
 % Output parameters:
 % y = u(n-n0) (line vector) on the ni:ns basis
 % n = the ni:ns temporal basis
 % Input parameters:
 % ni = lower limit of the temporal basis
 % ns = upper limit of the temporal basis
 % n0 = index for u(n-n0)
 N = ns-ni+1;
 Y = zeros (1, N);
 y(n0-ni+1:N) = 1;
 n = ni:ns;
end

Exercises

Define and graphically represent the following sequences:

1. 𝑦1[]= []

2. 𝑦2[]=0.7∙([+3]− [−3])

3. y3[n]= []+0.5 [−4]−0.5 [+4]

4. y4[n]:

Bonus Exercises

1. Generate and graph the signals: sm(t) – monoalternating rectified

sine, sd(t) – double alternating rectified sine.

2. Generate a 10x10 square matrix which contains random integers in

the interval 1:10 using the function call M = round(10*rand(10,10)).

a. Compute the sum of the elements in the corners of the matrix M;

b. Compute the sum of the elements of the matrix M;

c. Define a function that calculates the sum of the elements on each

row of the matrix M and returns a column vector of these sums.

16

3. Create a function that constructs the identity matrix, given the input

parameters: m – the number of rows and n – the number of columns of the

requested matrix.

4. Create a function that takes as input a matrix A and two values: a new

value m and an old value n. The function will return the input matrix after

replacing the occurrences of the old value with the new value, and the number

of replaced elements.

5. Create a function that takes a matrix A as input and returns two

vectors, a vector containing the even values in A and a vector containing the

odd values in A.

17

Annex 1

Table 1.2 shows other (more advanced) functions used in MATLAB.

Table 1.2 Other MATLAB Functions

Function/Parameter Description and Examples

cosh(x), sinh(x), tanh(x)
Hyperbolic cosine, hyperbolic sine and

hyperbolic tangent functions

acosh(x), asinh(x), atang(x)
The inverses of the hyperbolic cosine,

hyperbolic sine, and hyperbolic tangent

functions

Whos Displaying variables in the Workspace

pause,
pause(n)

Pause in instruction execution

Pause for n seconds in instruction execution

Subplot Declare a subplot within a figure

hold on, hold off
Display next graphs over an existing graph

(on) or next graphs must be independent of the

current graph (off)

axis ([x_inf x_sup y_inf y_sup])

The axes of the figures are displayed between

the limits x_inf and x_sup (on the Ox axis).

The same goes for the Oy axis with y_inf and

y_sup

xlabel(‘OX_axis_name’),
ylabel(‘OY_axis_name’),
title(‘Figure_Title’),
legend(parameters)

Axis titles, figure title, figure legend

save, load Saving or loading data between/from a file

cd,
pwd

Change current directory,
Display the name of the current directory

input(“Insert value using the
keyboard >>”)

Reading the value of a variable from the

keyboard

References

1. Valentin-Adrian Niţă, Radu Alexandru Badea, Răzvan-Eusebiu

Crăciunescu, “Introducere în prelucrarea semnalelor folosind Python”, –

Timişoara: Editura Politehnica, 2022

2. Mateescu, Adelaida, Dumitriu, N., Stanciu, L., “Semnale, circuite şi

sisteme”, Teora, București, 2001

3. https://www.mathworks.com/

https://www.mathworks.com/

