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Definition and representation of discrete signals in MATLAB 

 

 
1.  Discrete signals: definitions and characteristics 

 

 A discrete-time defined signal, x[n], is a function whose independent variable n 

is an integer and is usually represented by a sequence of numbers (samples). An 

example of a discrete signal is represented in Fig. 1. It is important to note that a 

discrete signal is not defined between two consecutive samples, which is why it cannot 

be assumed that the signal x[n] is zero for noninteger values of variable n. 

                         
Figure 1. Graphical representation of a discrete signal x[n] 

  

 The mathematical model of a discrete signal can be defined as an application: 

𝑥: ℤ → ℂ, 𝑛 → 𝑥[𝑛] 

A signal x[n] is periodic, of period N, if and only if the following condition is 

met: 

𝑥[𝑛 ± 𝑁] = 𝑥[𝑛], ∀𝑛 ∈ ℤ ș𝑖 𝑁 ∈ ℕ 

The smallest positive value of N, for which the preceding relation is fulfilled, is 

called the fundamental period. If there is no value for N to satisfy the relationship, the 

signal is called nonperiodic or aperiodic. 

 

2. Definition of discrete signals in MATLAB 

 

Discrete signals are defined in MATLAB as vectors or matrices, with each 

element in the vector or matrix representing the value of the signal being measured at 

a specific point in time or space. 

If the signal is one-dimensional (represented by a single independent variable), a 

vector can be used to define it in MATLAB. Thus, each element of the vector will be 

associated with a certain discrete moment of time n and will reflect the amplitude of 

the signal at that specific moment. 

If the signal is two-dimensional (represented by two independent variables), an 

array can be used to define it in MATLAB. In this case, each element of the matrix will 

correspond to a discrete signal value, and the size of the matrix will reflect the two-
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dimensional structure of the signal. For example, to represent a digital image in 

MATLAB, one can create an array A containing the pixel values of the image:  

A = [pixel_value1, pixel_value2, ...; pixel_valuen, ...]. 

Below, in Table 1, are presented some discrete signals, together with their 

definition in MATLAB. 

 

Table 1. Definition of basic discrete signals in MATLAB 

Discrete signal Signal definition in 

MATLAB 

Description 

Unit Impulse 

(Dirac) 

s=[1,zeros(1,N)]  
 

generates a line vector that has the 
first element 1 and the next N 
elements are zeros  

Unit step s=ones(1,N) 
 

generates a line vector with N 
elements equal to 1 

Exponentially 𝑝𝑛 s=p.^n 
s=power(p,n) 

generates an exponential sequence 
𝑝𝑛, where 𝑛 = 𝑀: 𝐿, 𝑀, 𝐿 ∈ ℤ 

Sinusoidal s=sin(2*pi*f*n) 
 

generates a sine sequence with 
discrete frequency f, where  
𝑛 = 𝑀: 𝐿, 𝑀, 𝐿 ∈ ℤ 

Rectangular s=square(2*pi*f*n) generates a sequence for a 
rectangular signal with discrete 
frequency f, where 
𝑛 = 𝑀: 𝐿, 𝑀, 𝐿 ∈ ℤ 

Sawtooth s=sawtooth(2*pi*f*n) generates a sequence for a sawtooth 
signal with discrete frequency f, 
where 𝑛 = 𝑀: 𝐿, 𝑀, 𝐿 ∈ ℤ 

 

For the sinusoidal, rectangular and sawtooth signals, the use 

of discrete or normalized frequency f can be observed, a measure of the sampling rate 

of an analog signal to obtain a discrete signal, defined according to the following 

relationship: 

𝑓 =
𝐹

𝐹𝑒𝑠
=

𝑇𝑒𝑠

𝑇
 

where F is the analog signal frequency, T is the analog signal period, Fes is the 

sampling frequency, and Tes=1/ Fes is the sampling period.  

To avoid alloying phenomena, which lead to signal distortion, signal sampling 

must follow Shannon's theorem: 

𝐹𝑒𝑠 > 𝐹 => 𝑓 =
𝐹

𝐹𝑒𝑠
< 0,5 

Thus, normalized frequencies always range from 0 to 0.5.  

For a discrete signal, the number of samples over a period of the sampled 

signal Nep can be determined as the inverse of the normalized frequency: 
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𝑇 = 𝑁𝑒𝑝 ∙ 𝑇𝑒𝑠 => 𝑁𝑒𝑝 =
𝑇

𝑇𝑒𝑠
=

1

𝑓
 

 

3. Graphical representation of discrete signals in MATLAB 

 

Discrete signals are plotted in MATLAB using the stem() function. This 

generates a graph similar to the plot() function, but displays individual points for each 

signal value, marking them on the graph according to their index.  

The stem function syntax, stem(x,n) is used to plot a discrete signal x[n] in 

which signal values are given by vector x and sampling times are given by 

vector n. The length of vector n must be equal to the length of vector x. 

 

Example 1 Generating and representing the unit impulse signal 

𝛿[𝑛] = {
1, 𝑛 = 0

0, in the 𝑟𝑒𝑠𝑡
 

% Unit impulse signal generation 
clear; 
clc; 
clear all 
n = -10:20; % generation of a vector from -10 to 20 
delta = [zeros(1,10) 1 zeros(1,20)]; % unit impulse generation 
stem(n,delta) % graphic representation 
grid on 
xlabel('n'); 
ylabel('Amplitude');  
title('Unit impulse (Dirac)'); 
axis([min(n) max(n) min(delta)-0.2 max(delta)+0.2]); 
 

 
Figure 2. Representation of the unit impulse signal 𝛿[𝑛] in the range 𝑛 = −10: 20 
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Example 2 Generation and representation of a train of periodic pulses of amplitude Al, 

period P and length M∙P: 

𝑠[𝑛] = ∑ 𝐴𝑙𝛿[𝑛 − 𝑙𝑃]

𝑀−1

𝑙=0

 

 

% Generation of a periodic impulse train 
clear; 
clc; 
clear all 
P = 5; M = 6; 
d = [1;zeros(P-1,1)]; % generation of the generating impulse, of length P 
y = d*ones(1,M); 
train = y(:); % generation of impulse train, of length P*M  
n = 0:M*P-1; 
stem(n,train) % graphical representation 
grid on 
xlabel('n'); 
ylabel('Amplitude'); 
title('Unit impulse train'); 
axis([min(n)-2 max(n)+2 min(train)-0.2 max(train)+0.2]); 
 

 
Figure 3. Representation of a train of periodic impulses of amplitude A=1, period P=5 and length 

M∙P=30 

 

 

Example 3 Generating and representing the unit step signal: 

 

𝑢[𝑛] = {
1, 𝑛 ∈ ℕ

0, in the 𝑟𝑒𝑠𝑡
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% Unit step signal generation 
clear; 
clc; 
clear all 
n = -10:20; % generating a vector from -10 to 20 
u = [zeros(1,10) ones(1,21)]; % unit step generation 
stem(n,u) % graphical representation  
grid on 
xlabel('n'); 
ylabel('Amplitude'); 
title('Unit step') 
axis([min(n) max(n) min(u)-0.2 max(u)+0.2]) 
 

 
Figure 4. Unit step signal representation 𝑢[𝑛] in the range 𝑛 = −10: 20 

 

 

Example 4 Generating and representing a true exponential sequence: 

𝑥[𝑛] = 𝑎𝑛, 𝑛 ∈ ℤ, 𝑎 ∈ ℝ 

 
% Generating a true exponential sequence 
clear; 
clc; 
clear all 
n = 0:35; % generation of a vector from 0 to 35 
a = 1.2; 
K = 0.2; 
x = K*a.^n; % generation of true exponential sequence 
stem(n,x) % graphical representation  
grid on 
xlabel('n'); 
ylabel('Amplitude'); 
title('Real exponential sequence') 
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Figure 5. Representation of a real exponential sequence in the interval 𝑛 = 0: 35 

 

Example 5 Generating and representing a complex exponential sequence: 

𝑥[𝑛] = 𝑎𝑛, 𝑛 ∈ ℤ, 𝑎 ∈ ℂ 

 Taking into account that the parameter a is complex, it can be written: 

𝑎 = 𝑟 ∙ 𝑒𝑗𝜔0 

where r and ω0 represent the modulus and phase of complex magnitude a, respectively. 

In this case, the signal x[n] can be rewritten: 

𝑥[𝑛] = 𝑟𝑛𝑒𝑗𝜔0𝑛 = 𝑟𝑛(cos 𝜔0𝑛 + 𝑗 sin 𝜔0𝑛) 

where 𝑥𝑅[𝑛] = 𝑟𝑛 cos 𝜔0𝑛 and 𝑥𝐼[𝑛] = 𝑟𝑛 sin 𝜔0𝑛 represent the real and imaginary 

parts of the signal x[n] respectively, which can be represented as a function of n. 

 
% Generating a complex exponential sequence 
clear; 
clc; 
clear all 
n = 0:40; % generation of a vector from 0 to 40 
c = -(1/12)+(pi/6)*1i; 
K = 2; 
x = K*exp(c*n); % generation of complex exponential sequence 
figure(1) % graphic representation 
subplot(2,1,1); stem(n,real(x)); 
grid on 
xlabel('n'); ylabel('Amplitude'); 
title('The real part of the complex exponential sequence')  
subplot(2,1,2); stem(n,imag(x));  
grid on 
xlabel('n'); ylabel('Amplitude'); 
title('The imaginary part of the complex exponential sequence') 
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Figure 6. Representation of the real and imaginary parts of a complex exponential sequence in the 

range 𝑛 = 0: 40 

 

 

Example 6 Sinusoidal signal generation and representation: 

𝑥[𝑛] = A ∙ sin(2 ∙ 𝜋 ∙ 𝑓 ∙ 𝑛) , 𝑛 ∈ ℤ, 𝑓 ∈ ℝ  

 

% Sinusoidal signal generation 
clear; 
clc; 
clear all 
n = 0:40; % generation of a vector from 0 to 40 
f = 0.1; 
A = 1.5; 
xsin = A*sin(2*pi*f*n); % sinusoidal signal generation 
stem(n,xsin) % graphical representation 
grid on 
xlabel('n'); ylabel('Amplitude'); title('Sinusoidal signal'); 

 
Figure 7. Representation of the sine signal in the range 𝑛 = 0: 40 
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Exercise 1 

 Generate and plot the following signals. The abscissa (n) should cover only the 

indicated area. 

a. 𝑥𝑎[𝑛] = 0.7 ∙ 𝛿[𝑛 + 7] for  −15 ≤ 𝑛 ≤ 15 

b. 𝑥𝑏[𝑛] = 1.5 ∙ 𝑢[𝑛 − 5] for  −5 ≤ 𝑛 ≤ 20 

c. 𝑥𝑐[𝑛] = sin (
𝜋

17
𝑛) for  −15 ≤ 𝑛 ≤ 15. What is the value of the discrete 

frequency? 

d. 𝑥𝑑[𝑛] = {
𝑛 + 1, 0 ≤ 𝑛 ≤ 3

0, in the rest
 for 0 ≤ 𝑛 ≤ 3 

e. 𝑥𝑒[𝑛] = ∑ 𝑥𝑑[𝑛 − 𝑖𝑃]𝑀−1
𝑖=0  for M=5, P=4 and 0 ≤ 𝑛 ≤ 19 

 

Exercise 2 

 Generate and plot a rectangular signal and a sawtooth signal having 12 samples 

per period. Considering the n index in the interval 0  n  30, how many periods are 

displayed for each signal? 
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