Laplace transform using MATLAB

1. Introduction to the Laplace transform of continuous time signals

In the last semester, at Signal and system 1 - laboratory, it was used the series and the Fourier transform to determine the frequency domain characteristics, of certain types of continuous-time signals. For a signal to have Fourier series or transform it must be absolutely integrable. Thus, a function of the type $t \cdot \sigma(t)$ is not absolutely integrable, and therefore the Fourier transform cannot be calculated. In this case the Laplace transform can be applied. Thus, the Laplace transform can be considered as a generalization of the Fourier transform.

The Laplace transform (also called bilateral Laplace transform) for a given signal $x(t)$ is given by:

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

where s is a complex number. The one-sided Laplace transform is defined:

$$
X(s)=\int_{0}^{\infty} x(t) e^{-s t} d t
$$

Thus, given a signal $x(t)$, the set of all complex numbers s for which the integral exists is called the Convergence Region. For example, for the step function, $\sigma(t)$, the region of convergence is given by $\operatorname{Real}(s)>0$.

The equation used to reconstruct the signal $x(t)$, knowing its Laplace transform, $X(s)$, is:

$$
x(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} X(s) e^{s t} d s
$$

The integral is evaluated for $s=c+j \omega$ in the complex plane between the limits $c+j \infty$ and $c-j \infty$, where c is a real number for which s belongs to the region of convergence of $X(s)$. From a practical point of view, the integral is quite difficult to solve, so algebraic methods are used, such as: decomposition into simple fraction, using known pairs, $x(t) \underset{L}{\leftrightarrow} X(s)$ or determining the residues and poles of $X(s)$. A series of Laplace pairs can be found here http://ece-research.unm.edu/bsanthan/ece541/table_ME.pdf

The equation for the residuals is, for a signal $x(t)$, with $x(t)=0, t<0$:

$$
x(t)=\sum_{\begin{array}{c}
\text { all plos of } X(s) \\
\text { from the left half plane }
\end{array}} \operatorname{Rez}\left[X(s) e^{-s t}\right]
$$

Example 1

Using symbolic notation, determine the Laplace transform for the signal:

$$
x(t)=\left\{\begin{array}{c}
e^{-a t}, t \geq 0 \\
0, \text { otherwise }
\end{array}\right.
$$

```
%% MATLAB
%% Calculation of the Laplace transform
syms x a t;
x = exp(-a*t);
X = laplace(x) % function that generates the Laplace transform for
symbolic writing
```

The result obtained:

$$
\begin{aligned}
& X= \\
& 1 /(a+s)
\end{aligned}
$$

Assignment 1

Using symbolic notation, determine the Laplace transform for the signals:

$$
\begin{aligned}
& x_{1}(t)=\left\{\begin{array}{c}
\cos (\omega t), t \geq 0 \\
0, \text { otherwise }
\end{array}\right. \\
& x_{2}(t)=\left\{\begin{array}{c}
\sin (\omega t), t \geq 0 \\
0, \text { otherwise }
\end{array}\right. \\
& x_{3}(t)=\left\{\begin{array}{c}
\frac{t^{4}}{4!}, t \geq 0 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Example 2

Using symbolic notation, determine the inverse Laplace transform for the signal:

$$
X(s)=\frac{s+2}{s^{3}+4 s^{2}+3 s}
$$

\%\% MATLAB
\%\% Calculation of the inverse Laplace transform syms $X \mathrm{~s} \mathrm{x} \mathrm{;} \mathrm{\%} \mathrm{the} \mathrm{symbols}$
$X=(s+2) /\left(s^{\wedge} 3+4^{*} s^{\wedge} 2+3^{*} s\right) ; \%$ Laplace transform
x = ilaplace(X) \% inverse transform
The result obtained:

$$
\begin{aligned}
& \mathrm{x}= \\
& 2 / 3-\exp \left(-3^{\star} t\right) / 6-\exp (-t) / 2
\end{aligned}
$$

Example 3

Determine the parameters of the signal $x(t)$ knowing that the Laplace transform is:

$$
X(s)=\frac{s+2}{s^{3}+4 s^{2}+3 s}
$$

\%\% Calculation of the Laplace transform using numerical methods numaratorul = [1 2]; \% numerator coefficients numitorul = [14 4 0]; \% denominator coefficients [r, p] = residue(numaratorul,numitorul); \% calculation of residues (r) and poles (p)

The result obtained:

$$
\begin{aligned}
& r= \\
& \\
& \quad \begin{aligned}
&-0.1667 \\
&-0.5000 \\
& 0.6667
\end{aligned} \\
& p= \\
& \\
& \\
& -3 \\
& -1 \\
& 0
\end{aligned}
$$

Using the results obtained for r and p yields the inverse signal $x(t)$

$$
x(t)=0.66667-0,5 \cdot e^{-t}-0,16667 \cdot e^{-3 t}, t \geq 0
$$

Assignment 2

Determine the signal parameters $x(t)$ (symbolic and numerical) knowing that the Laplace transform is:

$$
X(s)=\frac{5 s-1}{s^{3}-3 s-2}
$$

Assignment 3

A. Determine the Laplace transform for the signals:

$$
\begin{gathered}
x_{1}(t)=\left\{\begin{array}{c}
e^{-2 t}, t \geq 0 \\
0, \text { otherwise }
\end{array}\right. \\
x_{2}(t)=\delta(\mathrm{t}-7) \\
x_{3}(t)=\sigma(\mathrm{t}-7) \\
x_{4}(t)=\left\{\begin{array}{c}
1,0<t<1 \\
-4,1<t<2 \\
0, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

B. Determine the Laplace transform for the signals from the below figure:

(a)

(b)
C. Determine the signal whose Laplace transform is given by the following expressions. Consider the signal is causal.

$$
\begin{gathered}
X_{1}(s)=\frac{1-e^{-s}}{s+1} \\
X_{2}(s)=\frac{s+1}{(s+2)(s+3)}
\end{gathered}
$$

Bibliography

1. Mateescu, Adelaida, Dumitriu, N., Stanciu, L., Semnale, circuite și sisteme, Teora, București, 2001.
2. Răzvan Eusebiu Crăciunescu, Valentin Adrian Niţă, Radu Alexandru Badea, Semnale şi programare : de la teorie la aplicaţii folosind MATLAB/Octave, indrumar de laborator Editura Politehnica Press, Bucureşti 2022, ISBN (print) 978-606-9608-00-5
