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LABORATORY 1 

PERIODIC SIGNALS 

1.1. The objective of the laboratory 

The paper focuses on the spectral analysis of periodic signals. In order to 

achieve this, we have to measure the amplitude spectrum of sinusoidal and 

rectangular periodic signals, with different duty cycles, as well as the amplitude 

spectrum of triangular symmetrical periodic signals. We have to determine the 

power obtained for the square signal (with different duty cycles) and the one for 

the triangular signal, using the experimental data. Lastly, the resulting power will 

be compared to the one obtained through the time domain representation of the 

same signals.  

1.2. Theoretical aspects 

A periodic signal ( )x t  is mathematically represented as a periodic function, 

in other words, for which there is a real nonzero number T , called period, such 

that the following equality is achieved: 

 ( ) ( ),x t T x t t+ =   .  (1) 

If T  is period and ensures the fulfilment of equation (1), then any multiple, 

kT , where k  , is also a period for the signal. The lowest, strictly positive value 

of the period is called the main period (or repetition period) of the signal. 

The usual signals encountered in practice have a moment of occurrence and 

a moment of extinction, in other words they can fulfil equation (1) only on a finite 

length of the time axis, which means that rigorous periodic signals do not exist in 

practice. However, in some situations, it is useful to model a finite-length signal, 

having on its existence a periodic variation, using a periodic function that fulfils 

(1) on all the real axes. This modelling does not lead to errors if the duration of 

the signal is much higher than the repetition period and than the duration of the 

transient regimes occurring in the circuit when applying or suppressing the signal 

and, moreover, if these transient regimes are not in the area of interest. 
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A periodic signal ( )x t , of period T , can be developed in Fourier Series if 

the Dirichlet conditions are satisfied. 

The formulas of the Fourier Series and the relations used for calculation of 

the coefficients are given in Table 1. 

Table 1 The Fourier series expressions of an analogic periodic signal 
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 = =  represents the fundamental angular frequency (pulsation), 

and 0f  is the fundamental frequency, which is also called the repetition frequency 

of the periodic signal. 

The choice regarding the limits of integration while evaluating the 

coefficients from the Fourier Series is arbitrary and it is made in such a way as to 

simplify the calculations; it is very important that the integration is made over a 

period (from 2T−  to 2T+ , from 0  to T  etc.). 

The Exponential Fourier Series provides a decomposition of the periodic 

signal into a sum of elementary exponential components 0jk t
e


, physically 
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unachievable. Its use is very convenient in the problems in which is required to 

determine the response of circuits to periodic signals. 

Practically (experimentally), we are interested in the Harmonic Fourier 

Series (HFS). The following details are only applicable to this expansion. This 

decomposes the signal into a sum of cosine signals (hereinafter referred to as 

components), the frequencies of which are equal to multiples of the repetition 

frequency of the periodic signal. These components are also known as harmonics. 

The component situated on the zero frequency is called DC offset (the continuous 

component), the component at the 0f  frequency is the fundamental component 

(often called "the fundamental", "the first order harmonic" or "the repetition 

frequency"), and the components situated at the frequencies ( )0 , 2kf k k   are 

the harmonic components ("the harmonics of k order"). The assembly of these 

components forms the spectrum of the signal. Note that, in the case of periodic 

signals, the spectrum is discrete, with components only at certain frequencies, 

since periodic signals can be represented by discrete sums of elemental signals, 

as shown in Figure 1. 

The characterization of the periodic signals, in the frequency domain, is 

made using the amplitude spectrum and the phase spectrum, meaning a graphical 

representation of the amplitude-frequency dependencies and, respectively, of the 

initial phase-frequency dependencies of the components. For this purpose, to each 

component from the development is assigned a straight segment (spectral line) in 

the two spectra, located at the frequency of the component and having the 

amplitude of the segment proportional to the amplitude or phase of the 

component. 
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Figure 1. a) Amplitude spectrum diagram; b) Phase spectrum diagram 
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The " x " sign in the amplitude spectrum shows that the amplitudes are null 

and in the phase spectrum it shows that, in those cases, the notion of the initial 

phase is meaningless or not determined; the component at 04f f=  from Figure 

1, does not exist (has zero amplitude, so there is no need to determine the initial 

phase of a zero amplitude signal). The case of periodic signals with DC offset is 

not discussed in this paper. 

It is noted that, it is sufficient to know the amplitude and phase spectra to 

completely determine the signal. 

Theoretically, the signal spectrum ranges from zero frequency, 0f = , to 

infinite frequency, f = + ; in practice, the components situated at very high 

frequencies are negligible because of their small amplitude values, so for signals 

used in practice, the bandwidth of the signal is finite, meaning, the spectrum is 

limited. The decrease in amplitude of the components when the frequency 

increases is even faster as the signal is smoother (the mathematical function used 

for the representation is derivable as many times as possible). The spectral 

truncation depends on the requirements imposed by the type of communication 

which is using the signal. Therefore, the spectral analysis of a signal allows us to 

determine the effective bandwidth occupied by that signal. 

It is called "effective bandwidth" the bandwidth occupied by the important 

components of the application in question. The effective bandwidth depends on 

the threshold value below which the components from the amplitude spectrum 

can be considered as negligible. When the threshold value increases, the effective 

bandwidth decreases; the choice of the negligence threshold is made according to 

a criterion established on practical considerations for each application. If the 

effective bandwidth of the signal is known, it is possible to determine the 

bandwidth in which the circuits that process the signal function correctly. 

 

A. The harmonic signal 

The analytical expression of a harmonic signal is: 

 ( ) ( )0cosx t A t =  + , (2) 
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and the graphical representation of the amplitude spectrum is shown in Figure 2, 

where 0
0

1

2
f

T




= = . 
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Figure 2. The diagram of the amplitude spectrum of a harmonic signal 

A pure harmonic signal has a distortion factor of 0  (does not have 

harmonics with an order higher than 1). The real signal obtained from the function 

generator used in the laboratory is not perfectly sinusoidal, which implies the 

presence of non-zero spectral components for frequencies that are multiples of the 

fundamental frequency. We are interested in finding out how much the signal 

from the function generator differs from the pure harmonic signal or, in other 

words, how distorted (modified) the generated harmonic signal is; the distortions 

appear due to inherent nonlinearities in the generator’s circuits. To measure these 

distortions the harmonic distortion factor was introduced  , and it is defined as 

follows: 

 
12 2

2 3 10

1

......
10

kn n

k

A A

A


−+ +
= =  , (3) 

where, 20lg k
k

r

A
n

U
= , and the reference voltage, rU , will be explained later. 

  must be as small as possible, close to zero. 

B. The triangular signal 

Using Table 1, the Harmonic Fourier Series of the symmetrical triangular 

periodic signal is calculated, with the repetition frequency 0f  (Figure 3.a): 
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From (4), the amplitude of the spectral components is identified: 

2 2

8
, odd

  

0 ,  even    
k

E
k

A k

k






= 


.       (5) 

The graphical representation of the amplitude spectrum of the signal from 

Figure 3.a) is given in Figure 3.b), and the amplitude spectrum normalized to the 

amplitude of the fundamental component is found in Figure 3.c). 
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Figure 3. a) Time domain representation of the triangular signal; b) Amplitude 

spectrum for the triangular signal; c) Normalized amplitude spectrum for the triangular signal 

The power of the symmetrical triangular signal, dissipated on a 1  resistor, 

can be calculated based on experimental data according to the relationship: 

     

2

1 2

Mk

k
e

k

A
P

=

= ,         (6) 

where Mk  is the number of harmonics that are found in the amplitude spectrum. 
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If the time domain representation of the signal is used, the power of the 

triangular signal on a 1  resistor is calculated as follows: 

 
2

2 2

( )

1
( )

3
t ef

T

E
P x t dt X

T
= = = , (7) 

where efX  is the effective value of the analysed signal. 

C. The rectangular signal 

The graphical representation of a rectangular signal is shown in Figure 4. 

The signal is even, so the amplitudes ks  of the trigonometric series are null and 

k kA c= . 
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Figure 4. The graphic representation of the rectangular signal without DC offset and 

duty cycle 
T


 

From the point of view of the amplitude spectrum, the signal parity does not 

matter because the movement along the time axis only results in the modification 

of the phase spectrum, k , the amplitude spectrum, kA , will be the same. 

Using the relationships from Table 1 the expression of the Harmonic Fourier 

Series is: 

    ( )
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From (8) the expression of kA  becomes: 
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 ( ) ( )1 2 1 2

sin( )
2 2 sinc( )k

k
TA E E E E k

T T T
k

T




  





= + = + , (9) 

which highlights the fact that the amplitudes of the signal harmonics decrease 

after a 
x

x
x

sin
sinc =  shaped envelope. It is important to notice their 

proportionality with the amplitude 1 2E E+  of the periodic rectangular signal as 

well as with the ratio T , called duty cycle. 

When the rectangular signal has a duty cycle 
1

2T


= , the amplitudes 1E  and 

2E  are equal in module (
1 2E E= ). If the duty cycle decreases, 

1E  increases and 

2E  decreases to obtain a zero DC offset. Changing the duty cycle without 

changing the amplitudes 
1E  and 

2E  leads to changing the DC offset. 

The harmonics for which the following condition is met k p
T


 =  

(meaning 


T
pk = ), p  being an integer, have zero amplitudes. For example, for 

1

2T


=  and 

1

10T


= , the even harmonics will be null, 2k p= , respectively 

harmonics of 10k p=  order. 

Figure 5 shows the amplitude spectrum of the signal ( )x t  from Figure 4, 

maintaining the T  period constant, and the   width of the impulse equal to 2T , 

respectively 10T . 



Periodic Signals 

9/23 

 

0
0f 02 f 03 f 04 f 05 f 06 f

kA

f

a)

07 f 08 f 09 f 010 f

1 2E E+

1 2

2

E E+

0

kA

f
b)

018 f016 f010 f

1 2

5

E E+

1 2

10

E E+

020 f0f 02 f 04 f 06 f 08 f
012 f 014 f

 

Figure 5. a) Amplitude spectrum of the rectangular signal with duty cycle 1 2T =  

b) Amplitude spectrum of the rectangular signal with duty cycle 1 10T =  

The normalized amplitude spectra are obtained by the normalization of kA  

at the fundamental amplitude value 1A . 
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This ratio highlights a decrease in amplitude of the harmonics compared to 

the fundamental. 

So, for a 1 2T =  the relationship (10) becomes: 
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The graphical representation of the normalized amplitude spectrum, in this 

case, is given in Figure 6. 
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Figure 6. Graphical representation of the amplitude spectrum normalized to the fundamental 

frequency for a rectangular periodic signal with duty cycle 1 2T =  

The power of the rectangular signal, dissipated on a 1  resistor, can be 

calculated based on experimental data according to the relationship: 

 
2

1 2

Mk

k
e

k

A
P

=

= . (12) 

If the time domain representation of the signal (Figure 4) is used, the power 

of the rectangular signal strength on a 1 , is calculated using the relation: 

 ( )
2 2 2 2

1 2 2

( )

1
( )t

T

P x t dt E E E
T T


= = − + . (13) 

1.3. The experimental part of the laboratory 

The block diagram of the assembly is shown in Figure 7. 
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Figure 7. The block diagram of the assembly for periodic signals 
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A)    Determination of working parameters for the spectrum analyzer 

When making measurements, reading them and interpreting the measured 

values, take into account that rmsV  is the effective value of the voltage expressed 

in volts (rms = root mean square). It helps in identifying various voltage 

parameters of a signal (average voltage, peak voltage, amplitude etc – consult the 

METc lecture/laboratory). 

For the devices used in the laboratory, dBm is the unit of measure for the 

voltage expressed in decibels having the reference voltage the voltage which 

corresponds to a power of 1mW on a resistance of 50 Ω. So, for a P 1mW=  and 

a R 50=  , the actual reference voltage is obtained as follows: 

3

, 10 50 0,2236 
2

r
r ef

U
U PR V−= = =  = . 

This voltage is used when there exists a perfect matching between the 

generator and spectrum analyzer, which is equivalent to saying that the output 

impedance of the generator and the input impedance of the spectrum analyzer 

(assuming they are complex) must be conjugate complex (ZOUTgenerator = Z*
IN analyzer).   

The two impedances form a voltage divider (Figure 8). Generally, this condition is 

fulfilled, hence the reference voltage is (generally!) 0.2236 Vrms.  

This step of the practical work aims to initiate the students in their using of a 

measuring bench, which they have never worked with before. In practice, the first 

operation is checking whether the devices work properly. The output impedance of 

the signal generators is value of 50Ω. Therefore, the value of the input impedance 

of the analyzer must be determined. The effect of its deviation at the value of 50Ω 

can be expressed through a corresponding deviation of the reference voltage, with 

the value of 0.2236 Vrms. This is rather convenient, especially for the calculations 

that are to be made in this paper. 

It is worth noting that the apparatus always transforms in dBm using the 

reference voltage 0.2236 Vrms, because this is a parameter only used for the 

calculations made by the apparatus. Since the devices have identical processors, 

they clearly cannot differ from one device to another. Hence, in practice, the 

parameter that can differ in the case of generators used in this practical work is the 
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input impedance, which can be the equivalent of using a different reference voltage 

for the calculations (hereinafter named equivalent reference voltage). 

To determine the equivalent reference voltage, the further steps are followed: 

• A sinusoidal signal is applied at the input of the oscilloscope, with the 

frequency of 200 kHz, obtained using the function generator. For the connections, 

consult Figure 7 (Press the Waveforms button and the corresponding button 

underneath the screen for a harmonic wave form). For setting the frequency, press 

the button underneath the screen corresponding to the Frequency parameter, until 

this parameter is highlighted in blue. Then, introduce from the keyboard the value 

of 200 and from the buttons underneath the screen, press the corresponding one for 

the unit of kHz; 

• Measure the effective value of the generated signal with the 

oscilloscope as follows: activate the channel of the oscilloscope which is connected 

to the function generator by pressing the 1 or 2 button (it must turn yellow). Press 

the Auto Setup button, then the Measure one, select the channel to which the 

generated sinusoidal signal was connected to be the source (by pressing the button 

corresponding to Source underneath the oscilloscope’s screen, until the desired 

channel is selected, then press the rotating button Intensity/Adjust to save the 

settings). Next, activate the All Measure (by pressing the button underneath the 

oscilloscope’s screen corresponding to All Measure, until it is On). Look at the 

value given by RMS. Adjust the generated signal’s amplitude such that the 

effective value Vrms indicated on the oscilloscope to be 
, rms2 0,4472 Vr efU = (by 

pressing the button underneath the function generator’s screen corresponding to 

Amplitude such that Amplitude is highlighted in blue. Using the rotating button of 

the function generator, adjust the amplitude until RMS displays 0.4472). The value 

displayed on the signal generator will be U1. 

• Disconnect the cable from the oscilloscope and connect it to the 

spectrum analyzer. Measure using the cursor the voltage U2 in dBm, U2 [dBm] 

(Figure 8) as follows: press the CENTER button, input 0.2 and press the MHz 

button. Press SPAN and adjust this parameter’s value using the rotating button at 

10 kHz/div. Press the MKR button, input 0.2 and press MHz. Read the displayed 

value in dBm, pointed by the cursor placed at 0.2 MHz. Be careful, the device 
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always indicates the sign (+ or −), which is important. Such an example is: 1:0.200 

– 3.4 dBm.  

• To calculate the voltage divider, relation (15), transform U2 in volts 

using the formula  
 2 dBm

20
2 V 0,2236 10

U

U =   

𝑈2

𝑈1
=

𝑅

50+𝑅
= 𝜃,      (15) 

where θ is the division coefficient. 

• From relation (15) determine the value of R and 

 
3

, , 10  Vr ef realU R−=   (16) 

 

 

Figure 8. Block scheme of the periodic signal mount 

As a reminder, for a voltage U, its value in dBm is: 

 20lg dB
r

U
n

U
= ,    (17) 

where Ur is a reference voltage. 

B)    Theoretical and experimental spectral analysis of the rectangular periodic 

signal with duty cycle 1 2T = . 

Set the function generator’s waveform (Waveforms button) to be 

rectangular, the frequency (Frequency button located underneath the screen) 

0 200 kHzf = , the duty cycle (DUTY button located underneath the screen) 

1 2T =  (i.e. 50%) and the amplitude (Amplitude button located underneath the 

screen) E  of the rectangular signal such that the level of the fundamental 

harmonic (the spectral component placed at the signal frequency, in this case 

200 kHz ) measured with the spectrum analyzer to be 0 dBm . To avoid setting 

errors, set the reference level to 10 dBm  - REF LVL button. To measure the 
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harmonics, the centre frequency of the analyzer ("CENTER" button) is fixed at 

1MHz  and SPAN at 200 kHz/div  (in this way you can see more harmonics on 

the analyzer screen, starting with the fundamental harmonic). One of the markers 

is adjusted to the harmonic frequency of the component which is to be measured 

and read the value indicated in dBm (for example, it is desired to measure the 

second harmonic. The cursor is adjusted to 0,400 MHz  and the value indicated 

in dBm is read. Because the second harmonic is measured, the measured value 

will represent 2A  expressed in dBm. These notations are used in the calculations 

below. When the cursor indicates HIGH or LOW it means that a higher or a lower 

value of the maximum frequency has been set, respectively, of the minimum 

frequency that can be viewed on the analyzer screen, which means that the 

analyzer centre frequency must be changed to a higher value, respectively smaller 

value. 

Measure the level in dBm of the first 20 harmonics ( 1A , 2A  etc.) and write 

them down separately in Table 2. In Table 2 we have: 

• k  - the order of harmonics, 

•  MHzkf  - the harmonic frequency of k  order, 

• For the experimental part: 

- Using markers A1, A2, etc. were measured in dBm; 

- Write in the table      1

1 exp

dB dBm dBmk
k

A
A A

A
= − . 

For the theoretical part (calculated at home): 

- 
1 th.

kA

A
- is calculated with equation (11); 

-  
1 1th.

dB 20lgk kA A

A A
= . 
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Table 2 Spectral analysis of the rectangular periodic signal with 1 2T =  

k  1 2 3 4 5 ... 19 20 

 MHzkf  0,2 0,4 0,6 0,8 1 ... 3,8 4 

1 th

kA

A
         

 
1 th

dBkA

A
         

 
1 expe

dBkA

A
         

1 expe

kA

A
         

The values 01E  and 02E−  of the studied signal are measured using the 

oscilloscope: press the Auto Setup button, then press the Measure button so that 

it is On (to select a value, press the rotating button Intensity/Adjust). Select as the 

source the channel which the studied signal was connected to (by pressing the 

button underneath the screen corresponding to Source to select the desired 

channel) and read the values Max (for E01), respectively Min (for E02), from the 

screen. 

C)  Theoretical and experimental spectral analysis of the rectangular 

periodic signal with duty 1 4T = . 

The theoretical and experimental spectral analysis of the same rectangular 

periodic signal with 0 200 kHzf = , but with 1 4T =  (i.e., 25%, change made 

by pressing the DUTY button and adjusted by using the rotating button). Pay 

attention to the E  amplitude (Amplitude button), after changing the duty, the 

amplitude of E is set such that the level of the fundamental harmonic is equal to 0 

dBm, similar to the experiment from point B. The calculations are like those from 

the previous point. 
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Table 3 Spectral analysis of the rectangular periodic signal with 1 4T =  

k  1 2 3 4 5 ... 19 20 

 MHzkf  0,2 0,4 0,6 0,8 1 ... 3,8 4 

1 th

kA

A
         

 
1 th

dBkA

A
         

 
1 expe

dBkA

A
         

1 expe

kA

A
         

The values 01E  and 02E−  of the studied signal are measured as explained at 

the previous point. 

D)    Measuring the rise time for the periodic rectangular signals studied 

above: 1ct ( 1 2T = ) and 1ct  ( 1 4T = ). 

Connect the function generator to the oscilloscope. Adjust the deflexion 

coefficient on the Ox axis (horizontal) (sec/div) (the rotating button from section 

Horizontal) to the minimal value, by pressing the button All Measure underneath 

the screen. Select the channel connected to the studied signal as the source, then 

read the Rise time displayed on the screen. 

E)    Determine the bandwidths occupied by the rectangular periodic signals 

studied above. 

It is taken into account that in the bandwidth are included all the components 

that have amplitudes higher than 1% of the fundamental amplitude, meaning 

 10,01 VA . Firstly, the amplitude of the fundamental is set at 0 dBm, like in the 

above experiments. That is,  120lg 0 dBm
r

A

U
= . So,  10,01 VA  expressed in 

dBm will be: 

 1 10,01
20lg 20lg0,01 20lg 40 0 40 dBm

r r

A A

U U
= + = − + = − . 
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Therefore, we will be looking for all the components that have amplitudes 

higher than 40 dBm− . Taking in consideration that in the case of a rectangular 

signal, with duty cycle 50%, the harmonics of even order are very small, 

practically zero, we will be out of the bandwidth only when minimum 3 

consecutive harmonics have the level less than 40 dBm− . In the case of a 

rectangular signal, with duty cycle 25%, the harmonics of *4 , Nk p p=   order 

are very small (practically zero), so we are out of the bandwidth when minimum 

5 consecutive harmonics have the level less than 40 dBm− . For performing 

experiments only at the limit of the bandwidth we proceed as follows: at the 

function generator it is set one of the above periodic signals. Pay attention to the 

correct adjustment of E  (Amplitude button) after changing the duty cycle (DUTY 

button) such that the level of the fundamental is 0 dBm , similar to the experiment 

at point B. Adjust the reference level of the spectral analyzer to 10 dBm  (REF 

button LVL), that is the maximum measurable level. If all the adjustments were 

made correctly, the fundamental harmonic level is near a horizontal black line 

drawn from the spectrum analyzer screen (see Figure 9), line indicating a level 

equal to 0 dBm . A vertical division of the screen has 10 dBm , so to identify the 

horizontal line of 40 dBm−  we have to identify the fourth horizontal black line 

below that of the 0 dBm  horizontal line. Then, the value indicated by CENTER 

is increased until the harmonics are close to 40 dBm−  (see Figure 10). 

  

Figure 9. The spectrum of the rectangular 

signal with duty cycle 50% (low frequencies). 
Figure 10. The spectrum of the rectangular 

signal with duty cycle 50% (high frequencies). 

0 dBm 0 dBm 

−40 dBm 
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Figure 11. The spectrum of the rectangular 

signal with duty cycle 25% (low frequencies). 
Figure 12. The spectrum of the rectangular 

signal with duty cycle 50% (high frequencies). 

Place one of the cursors on the screen, set the frequency value equal to the 

value indicated by CENTER. Considering that the generator is set to a signal of 

200 kHz , its harmonics are located on a multiple of 200 kHz . The level of the 

harmonics, that can be viewed on the spectral analyzer screen, is measured from 

left to right. Measurements shall be made until at least 3 (duty cycle 50%) or 5 

(duty cycle 25%) consecutive components are found, below the level of 40 dBm−

. The last component indicating a higher value than 40 dBm−  is the last 

component in the spectrum, situated on the frequency 200 kHzk  . Since the 

signals are in the base band, the signal bandwidth is 200 kHz B k=  . If all of the 

components on the screen are higher than 40 dBm− , the CENTER value is 

increased, and the level of the harmonics is still measured. If the components have 

lower values than 40 dBm− , the value indicated by CENTER is decreased. 

F)  The theoretical and experimental spectral analysis of symmetrical 

triangular periodic signal. 

The waveform generated by the function generator is changed to obtain a 

triangular signal (Waveforms button). Its frequency is set to 0 200 kHzf = , signal 

symmetry at 50% (DutyCycle button) and amplitude of the triangular signal E  so 

that the fundamental level measured with the spectral analyzer is 0 dBm . For the 

triangular signal the first 12 spectral components are measured and under these 

conditions the bandwidth occupied by the triangular signal following the steps 

described above is determined. The experimental results are then completed into 

a table similar to Table 2, and the theoretical ones will be completed at home. 
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The 0E amplitude for the studied signal is measured using the oscilloscope 

following these steps: press the Auto Setup button, press the Measure button, then 

All Measure is selected to be On. The channel to which the studied signal was 

connected is selected as the source, and Max as the type of measurement. 

G)   Determine the distortion factor. 

A sinusoidal signal (Waveforms button), generated by the function 

generator, having a frequency of 0 200 kHzf =  and the level of the fundamental 

equal to 0 dBm, is applied at the input of the spectrum analyzer. Measure the level 

of the first 10 spectral components and calculate the distortion factor using the 

relationship (3).  

Repeat the measurements for a sinusoidal signal produced by the function 

generator, having a fundamental frequency of 0 200 kHzf =  and a reference level 

of 10 dBm. 

H)    Repeat point F) for a triangular signal with 0 10 kHzf = , this time using 

the oscilloscope Siglent SDS 1202X-E for the frequency domain. 

The Siglent SDS 1202X-E oscilloscope can also be used as a spectral 

analyzer. In order to enter in the spectral analysis mode, a signal is connected to 

the input of one of the two channels, Auto Setup button is pressed, then the Math 

menu button is pressed, FFT (Fast Fourier Transform) is selected and at Source is 

selected the channel on which the signal is connected. Use the rotating button 

from section Horizontal modify sec/div to set span to 100ms/div. 

For measurements in the frequency domain the oscilloscope is used. The 

reference voltage is determined by applying to the function generator a sinusoidal 

signal with the frequency 10 kHz , the amplitude of which is adjusted so that the 

amplitude of the fundamental component, viewed on the oscilloscope, used as a 

spectrum analyzer to be of 0 dB. Use the cursors (Cursor button), select Source -

MATH for the measurement of frequencies (by pressing the button corresponding 

to X underneath the screen) or amplitudes (by pressing the button corresponding 

to Y underneath the screen). The fundamental frequency will be determined with 

the cursor X1 or X2. To move the cursors on the screen, use the rotating button 

Intensity/Adjust. Then commute to Y and cursor Y1 or Y2 are placed at 0 dBV. 
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The effective value of this signal will be the reference voltage. Measure the level 

of all the other spectral components using cursor Y1 or Y2 by setting the cursor 

on their tip. For identifying the order of the measured spectral component, use the 

X cursors setting X1 and X2 on the respective component and reading the 

frequency indicated by the used cursor.   

I)   The spectra of theoretical and experimental amplitudes for the studied 

signals are plotted on a millimetre paper, 
1 teoretic

kA

A
 and 

1 experimental

kA

A
, depending 

on the frequency. 

For the same duty cycle, the spectra are plotted on the same graph (the 

theoretical value through a segment, and the experimental value by one point, 

using a different colour for segments and another for points). 

What connections can you see between the rise time measured at point D) 

and the signal’s spectrum? 

For the triangular signal, the theoretical and experimental amplitude spectra 

are plotted on another millimetre paper, 
1 teoretic

kA

A
 and 

1 experimental

kA

A
, on a frequency 

domain, on the same coordinate axes. 

J)   Determine the power dissipated on a 1  resistor for the rectangular 

signals based on the amplitude spectrum measured in Table 2 using equation 

(12). 

Note: While computing the power, using relation (12), mind the following 

aspect: using the spectrum analyzer the effective values of the amplitudes kA  
,k efA  

where ,
2

k
k ef

A
A = , are measured. 

Compare the power obtained using the experimental data eP  and the power 

of the fundamental 1P , with the power calculated based on the time expression, tP

, equation (13). The e

t

P

P
and 1

t

P

P
 ratios are determined. 
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Note: The amplitudes E1 and E2 from relation (13) are measured with the 

oscilloscope and are given by the formula  0 , 1,2i iE E i=   , where E01 and E02 

are the maximum, respectively, the minimum peak amplitudes of the rectangular 

measured signal, measured with the oscilloscope and θ is the division coefficient 

determined in point A). 

K) Determine the power of the triangular signal based on the measured 

components, relation (6) (mind the observations from point J)) 

The eP  is compared with tP  power which is calculated using the equation 

(7). The e

t

P

P
and 1

t

P

P
 ratios are determined, where 1P  is the power of the 

fundamental component. 
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1.4. Preparatory Questions 

a) Determine  1 VA  and  2 dBmA  using 1 20 dBmA =  and 2 10,01A A= , 

0,2236 VrefU = . Repeat for 0,775 VrefU = .  

b) If 1 20 dBmA =  and 2 10,01A A= , what is the difference (in dB ) between 

 1 dBmA  and  2 dBmA ? Repeat for 2 10,1A A=  and 2 10,001A A= . What do you 

observe? 

c) If 1 20 dBmA =  and 2 14 dBmA = , which is the value of the 2

1

A

A
 ratio in 

level units. Specify the unit of measurement. 

d) Determine the power dissipated by a harmonic sinusoidal signal with a level 

of 0 dBm  ( 0,2236 VrefU = ) on a resistor of 50 , 75 , 600 . Repeat for a 

level signal of 10 dBm . What power increase determines the change with 10 dB  

the signal level? 

e) Determine the power dissipated by a harmonic signal with a level of 0 dBm  

( 0,775 VrefU = ) on a resistor of 50 , 75 , 600 . Repeat for a level signal of 

10 dBm . What power increase determines the change with 10 dB  the signal level? 

f) Determine the damping factor for the resistive divider from figure 8 if R - 

50Ω (the typical input impedance of a signal analyzer) respectively R = 1MΩ (the 

typical input impedance of an oscilloscope). What do you observe? What will be 

the peak value of the signal U2 if the signal U1 is sinusoidal with the effective 

value of  2 V ?  

g) Draw the amplitude and phase spectra for the signal 

( ) ( ) ( ) 22 2sin 100 3cos 200 cos 400
4

s t t t t



 

= + + − + − 
 

. 

h) A periodic signal was measured with a spectrum analyzer. The following 

values were obtained: 1 20 dBmA = , 2 10 dBmA = , 3 25 dBmA = − , 4 1 dBmA = , 

5 21 dBmA = − , 6 25 dBmA = −  and 7 30 dBmA = − . Determine the effective 

bandwidth of the signal if the limit is 10,01A , 10,1A , respectively 10,001A . 
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1.5. Questions 

a) What is the value of the DC offset for the studied signal in B and C? 

b) What is the rise time for an ideal rectangular signal?  

c) Why can we not obtain a perfect extinction (suppression) of the even 

harmonics when 1 2T = ?  

d) Two rectangular periodic signals have the same period and complementary 

duty factors 1 2 1T T + = . What is the relationship between the amplitudes kA  

of the two signals? 

 

1.6. Exercises 

a) Adjust the parameters of a periodic rectangular signal such that 50μsT = , 

1 3T = , rA U= . Determine the values of the amplitudes kA , 0k = . 

b) When a sine signal was measured, the level of the harmonics were the 

following: 1 3 dBn = − , 2 43 dBn = − , 3 49 dBn = − , 4 63 dBn = −  ( 1 VrefU = ). 

Determine the harmonic of 1st order (in mV) and the distortion factor. 

c) In the spectral analysis of a periodic rectangular signal, it was found that 

the 2nd order harmonic has with 25 dB less than the fundamental. What duty cycle 

does the analyzed signal have? What will be the difference in dB between the 1st 

order harmonic and the 3rd harmonic level for this signal? 

d) The signal in a) is applied at the input of an ideal low pass filter with the 

cut-off frequency 45 kHztf = . Make a graphical representation of the output 

signal 

 


