
Convolution of Signals 
 

 

Definitions 

• Convolution is a fundamental concept in linear systems theory. 

• The convolution theorem states that the response of a system (assuming 

zero initial conditions or rest) to an arbitrary input signal is formed by the 

convolution of that input signal with the system's weighting function 

(impulse response). 

 

The continuous-time convolution of two signals 𝑥1(𝑡) and 𝑥2(𝑡) is 

defined by the relation: 

𝑥(𝑡) =  𝑥1(𝑡) ∗  𝑥2(𝑡) =  ∫ 𝑥1(𝜏)𝑥2(𝑡 − 𝜏)𝑑𝜏   ;  −∞ < 𝑡 <  ∞

∞

−∞

 

In the previous relation, 𝜏 is the integration variable and t is a parameter. 

The duration of a signal 𝑥𝑖(𝑡) is defined by the time moments 𝑡𝑖  and 𝑇𝑖 such that 

for any value of t outside the interval [𝑡𝑖 , 𝑇𝑖] the signal is zero, meaning: 

𝑥𝑖(𝑡) = 0, 𝑡 ∈  [𝑡𝑖  , 𝑇𝑖]  
 

The properties of the convolution integral are: 

1. Commutativity: 

𝑥1(𝑡) ∗  𝑥2(𝑡) = 𝑥2(𝑡) ∗  𝑥1(𝑡) 

2. Distributivity: 

𝑥1(𝑡) ∗ {𝑥2(𝑡) + 𝑥3(𝑡)} = 𝑥1(𝑡) ∗  𝑥2(𝑡) + 𝑥1(𝑡) ∗  𝑥3(𝑡) 

3. Associativity: 

𝑥1(𝑡) ∗ {𝑥2(𝑡) ∗  𝑥3(𝑡)} =  {𝑥1(𝑡) ∗ 𝑥2(𝑡)} ∗  𝑥3(𝑡) 

4. Duration: 

𝑥(𝑡) =  𝑥1(𝑡) ∗  𝑥2(𝑡) =

{
 
 

 
 

0, 𝑡 ≤ 𝑡1 + 𝑡2

∫ 𝑥1(𝜏)𝑥2(𝑡 − 𝜏)𝑑𝜏   ;  𝑡1 + 𝑡2 ≤ 𝑡 ≤  𝑇1 + 𝑇2

𝑇1+𝑇2

𝑡1+𝑡2

0, 𝑡 ≥  𝑇1 + 𝑇2

 

 

5. Time Shift Property 

Let 𝑥(𝑡) =  𝑥1(𝑡) ∗  𝑥2(𝑡). The convolution of time-shifted signals is 

characterized by the following relations: 

𝑥1(𝑡 − 𝜏1) ∗  𝑥2(𝑡) =  𝑥(𝑡 − 𝜏1) 

𝑥1(𝑡) ∗  𝑥2(𝑡 − 𝜏2) =  𝑥(𝑡 − 𝜏2) 



𝑥1(𝑡 − 𝜏1) ∗  𝑥2(𝑡 − 𝜏2) =  𝑥(𝑡 − 𝜏1 − 𝜏2) 

To better understand convolution, three important steps can be defined in 

calculating the convolution integral: 

 

Step 1. Apply the property that characterizes the duration of the convolution to 

define/identify the intervals where it is zero. 

 

Step 2. Reflect one of the signals across the vertical axis (Oy), i.e., represent one 

of the signals with respect to the time coordinate  −𝜏. 
 

Step 3. Vary the parameter t from −∞ to ∞ => meaning the mirrored (reflected) 

signal will shift from left to right along the time axis. During this shift, observe 

the intervals of overlap with the other signal (the one with which the 

convolution is being calculated) and evaluate the integral of the product of the 

two signals over these overlapping intervals. In other words, convolution can be 

interpreted as a measure of the "similarity" or "overlap" of the two signals over 

their defined intervals. 

 

In the graphs from Fig. 1, you can see the shifting of the rectangular signal (in 

red) along the time axis and its overlap with the parabolic signal (in blue). 

Initially, the convolution product is zero (Fig. 1-a) because the two signals do 

not overlap at all. As the red signal slides from left to right over the blue signal, 

the area of overlap gradually increases (the area marked in yellow in Fig. 1-b, 1-

c), reaching a maximum at some point, followed by a progressive decrease in 

the overlap area (and hence the convolution integral). Simultaneously, as the 

overlap occurs, the graph of the convolution function (the black line starting at -

0.5) is progressively drawn. The value of this function at any given moment 

(i.e., the value on the black graph) represents the common overlapping area of 

the two graphs (red and blue) at that moment — that is, the value of the 

convolution integral calculated at that point. For a dynamic and complete 

visualization of the graphs in Fig. 1, we recommend visiting the webpage 

https://en.wikipedia.org/wiki/Convolution. 

 

 
 

https://en.wikipedia.org/wiki/Convolution


 
 

 
Fig. 1 The convolution of a rectangular signal with an exponential (parabolic) signal:  

a - top; b - middle; c - bottom 

 

Examples of Convolution for Different Signals 

Example 1 – Convolution of a Rectangular Signal with Itself 

Let f(t) be a function defined as follows: 

𝑓(𝑡) = {
1;   0 ≤ 𝑡 ≤ 0.1
0;  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

To determine the convolution of the above signal with itself, the following 

Matlab/Octave code can be used: 

 
clc; 
clear all; 
close all; 
 
tstart = 0; 
tstop = 0.1; 
tpas = 0.0001; 
 
t = tstart: tpas : tstop; 
x = ones (1,1001); 
 
subplot(3, 1, 1); 
plot(t, x, 'linewidth', 3); 
axis ([-0.102 0.212 0 1.2]); grid; 
 
h = ones (1,1001); 
subplot(3, 1, 2); 
plot(t, h, 'linewidth',3); 
axis ([-0.102 0.212 0 1.2]); grid; 
 
t2 = 2*tstart: tpas: 2*tstop;  
y = conv(x, h) * tpas; 



 
subplot (3, 1, 3); 
plot(t2, y, 'r', 'linewidth', 2);  
axis ([-0.102 0.312 0 0.12]); grid; 

 

Code Explanation: 

Lines 1 to 3 reset the Matlab/Octave environment, close existing figures, etc. 

Lines 5 to 7 initialize the interval bounds where the function is non-zero, as well 

as the step size to be used for calculating values (the distance between two 

points in the interval from tstart to tstop). 

Lines 9 and 10 define the time value vector (t) and the corresponding values (the 

x and h vectors, which have the same dimensions as the t vector). See also Fig. 2 

below. 

 
Fig. 2 The Workspace area in the Octave/Matlab environment  

where the allocated variables are defined. 

Lines 12 to 20 plot the two functions x and h (generated in line 16). 

Lines 21 and 22 generate the convolution y=x∗h; note that the support t2 is non-

zero over a different interval than t. 

Lines 24 to 26 plot the convolution result (the last plot below, in red). 

 

Observations: 

The vectors h, t, and x each contain 1001 elements, as shown in Fig. 2. This 

results from the following combined specifications:  

a)  tstop−tstart=0.1  

b)  (tstop−tstart)/tpas=0.1/0.0001=1000  

c)  The interval is closed at both ends in this example, so an additional value 

is added to the 1000 existing elements, resulting in 1001 elements in the 

vector. 

The vectors t2 and y contain 2001 elements. The reasoning is similar to the one 

described earlier. The double number of elements (2000 versus 1000) is justified 

by considering Property 4 (Duration) of the convolution integral mentioned 

earlier in this platform. 

Fig. 3 shows the graphical representation of the generated signals as well as 

their convolution (the last plot in the image, in red). The maximum value of the 

convolution is 0.1, which occurs precisely at the point of maximum overlap of 



the two signals (as seen in the top and middle plots of Fig. 3). The common area 

in this case is 0.1×1=0.1. The "moment in time" when this happens is 0.1. 

Practically, one of the two signals considered is "rotated" and "moved" over the 

other from left to right on the graph (see also the theoretical introduction above). 

When the "shifted" graph exceeds the maximum overlap point, the convolution 

value starts to decrease (the descending ramp of the convolution triangle in Fig. 

3). When the two signals no longer overlap at all (i.e., t2>0.2), the convolution 

becomes 0. 

 

Exercise: Modify the code so that one of the signals x or h has a duration of 

0.05 (i.e., 0≤t≤0.05). The other signal remains defined as before. Display the 

graph of the convolution function in this new situation. Comment on the result 

obtained. Also, adjust the graphical representations so that they align at zero 

vertically. 

 
Fig. 3 Convolution of a Rectangular Signal with Itself – (Top and Middle: x and h); 

Bottom – Convolution y=x*h 

 

 

 

Example 2 – Decreasing Ramp Signal with Decreasing Exponential Signal 

Let x(t)x(t)x(t) and h(t)h(t)h(t) be two functions defined as follows: 



𝑥(𝑡) = {
1 − 10𝑡;   0 ≤ 𝑡 ≤ 0.1

0;  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

ℎ(𝑡) = {
𝑒−𝑓𝑡;   0 ≤ 𝑡 ≤ 0.1
0;   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

To determine the convolution of the above signals x(t)x(t)x(t) and h(t)h(t)h(t), 

you can use the following Matlab/Octave code: 

 
clc; 
clear all; 
close all; 
 
tstart = 0; 
tstop = 0.1; 
tpas = 0.0001; 
f = 100; 
 
t = tstart : tpas : tstop; 
x= 1-10*t; 
 
subplot(3, 1, 1); 
plot(t, x, 'linewidth', 2);  
axis([0 0.1001 0 1]); grid; 
 
h = 1 * exp(-f*t); 
subplot(3, 1, 2); 
plot(t, h, 'linewidth', 2); 
axis([0 0.1001 0 1]); grid; 
 
t2 = 2*tstart: tpas : 2*tstop; 
y = conv(x, h) * tpas; 
 
subplot(3, 1, 3); 
plot(t2, y, 'r', 'linewidth',2);  
axis(); grid; 

 

In this example, we have two distinct functions/signals for which the 

convolution is calculated. The Matlab/Octave function that performs 

convolution is called conv, and its usage is similar to that shown in the first 

example. Note the vertical alignment of the axes at zero. 

 

Question: Why is the value at line 23 multiplied by tpas? 

 

In Fig. 4, the convolution of the defined signals is graphically represented. The 

graphical "theoretical" calculation method is similar to that described in the 



previous example. The temporal support of the convolution aligns with Property 

4 (Duration) of the convolution integral. 

 

Exercise: Modify the code so that one of the signals is an increasing ramp 

instead of a decreasing ramp (i.e., it has a value of 0 at t=0t = 0t=0 and 1 at 

t=0.1t = 0.1t=0.1). Display the graph of the convolution function in this new 

situation. Comment on the result obtained. What should be modified in the code 

to obtain a ”smoother” exponential variation? 

 

 
Fig. 4 Convolution of the Ramp Signal with the Exponential Signal –  

(Top and Middle: x and h); down – convolution y=x*h 

 

The continuous-time correlation function of two signals x1(t) and x2(t) is defined 

by the following relation: 

𝑥(𝜏) =  (𝑥1 ∗  𝑥2)(𝜏) =  ∫ 𝑥1
∗(𝑡) 𝑥2(𝑡 + 𝜏)𝑑𝑡   ;   −∞ < 𝑡 <  ∞

∞

−∞

 

 



In the previous relation, 𝑥1
∗(𝑡) represents the complex conjugate of 𝑥1(𝑡), and 𝜏 

is the "shift" or "delay." The interpretation is as follows: a characteristic of the 

signal present in x1 at time t is also found in x2 at time 𝑡 + 𝜏. 

 

The correlation function represents a measure of similarity (overlap) between 

elements of a vector x and shifted (delayed) values of another vector y as a 

function of the shift. Correlation is often used to search for a specific shorter 

sequence (subvector with certain values) within a longer signal (vector). 

 

Example – Correlation of an Exponential Signal with Itself 

(Autocorrelation) – Discrete Time 

 

In Matlab/Octave, the xcorr function can be used to determine the correlation 

(referred to as cross-correlation in English) between two signals. If the two 

sequences are identical (i.e., the same signal), it is referred to as the 

autocorrelation of the signal. 

The code below determines the autocorrelation of the signal𝑒−𝑛/4 using the 

xcorr function. 

 
clc; 
clear all; 
close all; 
 
n = 0:10; 
x = exp(-n/4); 
y= exp(-n/4); 
[z, intarziere] = xcorr(x, y); 
 
subplot(3, 1, 1); 
stem (n, x); 
axis(); grid; title('x'); 
 
subplot(3, 1, 2); 
stem (n, y); 
axis(); grid; title('y'); 
 
subplot(3, 1, 3); 
stem (intarziere, z); 
axis(); grid; title('z = x*y'); 

 

The code generates the following graphical sequences for x, y, and their 

correlation function, i.e., z=x*y. It is observed that in this example, x = y 

(autocorrelation). For graphical representation in discrete time, the 

Matlab/Octave function stem is used. 



 

 
Fig. 5 Autocorrelation of the Exponential Signal 

 

Observations: 

a)  The maximum of the correlation function is achieved at value 0, i.e., when  

the two signals are not shifted relative to each other.  

b)  As one signal is shifted relative to the other, their correlation decreases. 

Additionally, the symmetry of the correlation values around the y-axis is 

observed (the evenness of the correlation function).  

c)  For displacement values greater than 10, the correlation becomes 0 

because the two signals no longer overlap at all. 

 

Homework: 

1. Define: 𝑥(𝑡) = 𝑡; 𝑡 ∈ [0, 1] și 𝑦(𝑡) = 𝑡2; 𝑡 ∈ [0, 1].  

2. Define: 𝑥(𝑡) = 𝑡; 𝑡 ∈ [0, 1]; 𝑥(𝑡) = 𝑡2; 𝑡 ∈ (1, 2] and 𝑦(𝑡) = 𝑡−3; 𝑡 ∈
[1, 2]. 



3. Define: 𝑥(𝑡) = 𝑡; 𝑡 ∈ [1, 2];  and 𝑦(𝑡) = 𝑡2; 𝑡 ∈ [0, 2] 
4. Define the functions: 𝑥(𝑡) = 𝑎 ∗ 𝑡 + 𝑏; 𝑡 ∈ [1, 2] such that 𝑥(1) =
2 ;  𝑥(2) = 1 and 𝑦(𝑡) = 𝑡2; 𝑡 ∈ [0, 2]. Determine 𝑥(𝑡). 

5. Define the functions: 𝑥(𝑡) = 𝑎 ∗ 𝑡 + 𝑏; 𝑡 ∈ [0, 1] such that 𝑥(0) =
0 ;  𝑥(1) = 4 și 𝑦(𝑡) = 𝑐 ∗ 𝑡 + 𝑑; 𝑡 ∈ [1, 2] such that 𝑥(1) = 3 ;  𝑥(2) =
0. Determine 𝑥(𝑡). 

6. Define the functions:  𝑥(𝑡) = 𝑎 ∗ 𝑡 + 𝑏; 𝑡 ∈ [0, 2] such that 𝑥(0) =
3 ;  𝑥(2) = 1 and 𝑦(𝑡) = 𝑐 ∗ 𝑡 + 𝑑; 𝑡 ∈ [1, 2] such that 𝑥(1) =
3 ;  𝑥(2) = 0 

7. Define: 𝑥(𝑡) = 2−𝑡; 𝑡 ∈ [1, 2];  and 𝑦(𝑡) = 3−𝑡; 𝑡 ∈ [1, 2]. 

a) For the signals defined above, implement the code necessary to generate the 

convolution function and plot the three signals (x, y, and their convolution). 

Where necessary, first determine the parameters a, b, c, and d of the 

corresponding signals. 

b) Redefine the above signals in discrete numerical intervals similar to the 

previous example (adjusting the intervals of definition of the functions with new 

values if necessary). Implement the correlation function between them. The step 

size between consecutive values on the discrete time axis should be chosen 

suitably for representation with the stem function. 
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