Sample Subjects for SS2 Laboratory Colloquium

1.

Determine the parameters A for the two-port network shown in the figure. For the indirect measurement of the currents at port 1 and port 2, measure the resistance values Ra1 at port 1 and Ra2 at port 2 using a multimeter set to ohmmeter mode. The measurements are performed with alternating current at a frequency of 10 kHz, and the voltage applied from the generator is 5 Vrms. For the circuit implementation, the following resistances are used: $R_{a1} = 10\Omega$, $R_{a2} = 10\Omega$, $Z_1 = 150\Omega$, $Z_2 = 600\Omega$.

	Measured values								Calculated values based on measurements				
Th	The condition $I_2 = 0$ The condition $U_2 = 0$							Λ	Λ	Λ	Λ	11	
U_1	<i>U</i> ₂	U _{a1}	I_1	U_1	U _{a1}	I_1	U _{a2}	<i>I</i> ₂	A ₁₁	A ₁₂	A ₂₁	A ₂₂	ΔA
[V]	[V]	[V]	[mA]	[V]	[V]	[mA]	[V]	[mA]	-	[kΩ]	[mS]	-	-

2. Determine the parameters Z for the two-port network shown in the figure. For the indirect measurement of the currents at port 1 and port 2, measure the resistance values Ra1 at port 1 and Ra2 at port 2 using a multimeter set to ohmmeter mode. The measurements are performed with alternating current at a frequency of 10 kHz, and the voltage applied from the generator is 5 Vrms. For the circuit implementation, the following resistances are used: $R_{a1} = 10\Omega$, $R_{a2} = 10\Omega$, $Z_1 = 150\Omega$, $Z_2 = 600\Omega$.

		Valori n	năsurate		Calculated values based on measurements					
The co	ondition	$I_2 = 0$	The co	ondition	$I_1 = 0$	7	7	<i>Z</i> ₂₁	Z ₂₂	$ Z_{12} - Z_{21} $
<i>U</i> ₁	<i>U</i> ₂	I_1	U_1	U_2	I ₂	Z ₁₁	<i>z</i> ₁₂			Z ₁₂
[V]	[V]	[mA]	[V]	[V]	[mA]	[kΩ]	[kΩ]	[kΩ]	[kΩ]	-

3. Determine the parameters Y for the two-port network shown in the figure. Work is done with alternating current at a frequency of 10 kHz, and the voltage applied from the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $R = 600\Omega$, $C_1 = 100$ nF, $C_2 = 100$ nF.

Measured values									Calculated values based on measurements				
	The condition $U_2 = 0$ The condition $U_1 = 0$												
$ U_1 $	$ U_{C1} $	I_1	$ U_{C2} $	I_2	U_2	$ U_{C1} $	I_1	$ U_{C2} $	I_2	1 ^r 11	1 ¹ 12	Y 21	I ^I 22
[V]	[V]	[mA]	[V]	[mA]	[V]	[V]	[mA]	[V]	[mA]	[mS]	[mS]	[mS]	[mS]

4. Determine the parameter values for the two-port network shown in the figure. Work is done with alternating current at a frequency of 10 kHz, and the voltage applied from the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $R = 600\Omega$, $C_1 = 100$ nF, $C_2 = 100$ nF.

	Measured va	lues	Calculated values based on measurements						
The condit	ion $U_2 = 0$	The condi	tion $U_1 = 0$	$(\mathbf{V}_{\mathbf{v}})$	(W)	(V)			
$\Delta t_{U_{C1}-U_1}$	$\Delta t_{U_{C2}-U_1}$	$\Delta t_{U_{C2}-U_2}$	$\Delta t_{U_{C1}-U_2}$	$arg\{Y_{11}\}$	$arg\{Y_{21}\}$	$arg\{Y_{22}\}$	$arg\{Y_{12}\}$		
[µs]	[µs]	[µs]	[µs]	[°]	[°]	[°]	[°]		

5. Determine the magnitude of the voltage transfer factor for the two-port network shown in the figure. Measure the input voltage (U₁) and the output voltage (U₂) for the frequencies in the table. The circuit is powered through port 1, with port 2 being opencircuited. The amplitude set by the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $R = 600\Omega$, $C_1 = 100$ nF, $C_2 = 100$ nF.

f [kHz]	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
<i>U</i> ₁ [<i>V</i>]										
<i>U</i> ₂ [<i>V</i>]										
$ H_{U21g} = \frac{U_2}{U_1}$										
$\left H_{U21g}\right _{teoretic}$										

6. Determine the phase of the voltage transfer factor for the two-port network shown in the figure. The circuit is powered through port 1, with port 2 being open-circuited. The amplitude set by the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $R = 600\Omega$, $C_1 = 100$ nF, $C_2 = 100$ nF.

