Sample Subjects for SS2 Laboratory Colloquium

1.

Determine the parameters A for the two-port network shown in the figure. For the indirect measurement of the currents at port 1 and port 2, measure the resistance values Ra 1 at port 1 and Ra2 at port 2 using a multimeter set to ohmmeter mode. The measurements are performed with alternating current at a frequency of 10 kHz , and the voltage applied from the generator is 5 Vrms . For the circuit implementation, the following resistances are used: $R_{a 1}=10 \Omega, R_{a 2}=10 \Omega, Z_{1}=150 \Omega, Z_{2}=600 \Omega$.

Measured values							Calculated values based on measurements												
The condition $I_{2}=0$												The condition $U_{2}=0$				A_{12}	A_{21}	A_{22}	$\Delta \boldsymbol{A}$
U_{1}	U_{2}	$U_{a 1}$	I_{1}	U_{1}	$U_{a 1}$	I_{1}	$U_{a 2}$	I_{2}											
$[\mathrm{~V}]$	$[\mathrm{V}]$	$[V]$	$[\mathrm{mA}]$	$[\mathrm{V}]$	$[\mathrm{V}]$	$[\mathrm{mA}]$	$[V]$	$[\mathrm{mA}]$	-	$[\mathrm{k} \Omega]$	$[\mathrm{mS}]$	-	-						

Determine the parameters Z for the two-port network shown in the figure. For the indirect measurement of the currents at port 1 and port 2, measure the resistance values Ra 1 at port 1 and $R a 2$ at port 2 using a multimeter set to ohmmeter mode. The measurements are performed with alternating current at a frequency of 10 kHz , and the voltage applied from the generator is 5 Vrms . For the circuit implementation, the following resistances are used: $R_{a 1}=10 \Omega, R_{a 2}=10 \Omega, Z_{1}=150 \Omega, Z_{2}=600 \Omega$.

Valori măsurate						Calculated values based on measurements													
The condition $I_{2}=0$														The condition $I_{1}=0$		Z_{12}	Z_{21}	Z_{22}	$\frac{\left\|Z_{12}-Z_{21}\right\|}{Z_{12}}$
U_{1}	U_{2}	I_{1}	U_{1}	U_{2}	I_{2}					-									
$[\mathrm{V}]$	$[\mathrm{V}]$	$[\mathrm{mA}]$	$[\mathrm{V}]$	$[\mathrm{V}]$	$[\mathrm{mA}]$	$[\mathrm{k} \Omega]$	$[\mathrm{k} \Omega]$	$[\mathrm{k} \Omega]$	$[\mathrm{k} \Omega]$	-									

3.

Determine the parameters Y for the two-port network shown in the figure. Work is done with alternating current at a frequency of 10 kHz , and the voltage applied from the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $\mathrm{R}=600 \Omega, \mathrm{C}_{1}=100 \mathrm{nF}, \mathrm{C}_{2}=100 \mathrm{nF}$.

Measured values										Calculated values based on measurements			
The condition $U_{2}=0$					The condition $U_{1}=0$								
$\left\|U_{1}\right\|$	$\left\|U_{C 1}\right\|$	$\left\|I_{1}\right\|$	$\left\|U_{C 2}\right\|$	$\left\|I_{2}\right\|$	$\left\|U_{2}\right\|$	$\left\|U_{C 1}\right\|$	$\left\|I_{1}\right\|$	$\left\|U_{C 2}\right\|$	$\left\|I_{2}\right\|$	$\left\|Y_{11}\right\|$	$\left\|Y_{12}\right\|$	$\left\|Y_{21}\right\|$	22
[V]	[V]	[mA]	[V]	[mA]	[V]	[V]	[mA]	[V]	[mA]	[mS]	[mS]	[mS]	[mS]

4.

Determine the parameter values for the two-port network shown in the figure. Work is done with alternating current at a frequency of 10 kHz , and the voltage applied from the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $\mathrm{R}=600 \Omega, \mathrm{C}_{1}=100 \mathrm{nF}, \mathrm{C}_{2}=100 \mathrm{nF}$.

Measured values					Calculated values based on measurements			
The condition $U_{2}=0$		The condition $U_{1}=0$		$\arg \left\{Y_{11}\right\}$	$\arg \left\{Y_{21}\right\}$	$\arg \left\{Y_{22}\right\}$	$\arg \left\{Y_{12}\right\}$	
$\Delta t_{U_{C 1}-U_{1}}$	$\Delta t_{U_{C 2}-U_{1}}$	$\Delta t_{U_{C 2}-U_{2}}$	$\Delta t_{U_{C 1}-U_{2}}$					
$[\mu \mathrm{~s}]$	$[\mu \mathrm{s}]$	$[\mu \mathrm{s}]$	$[\mu \mathrm{s}]$	$\left[{ }^{\circ}\right]$	$\left[{ }^{\circ}\right]$	$\left[{ }^{\circ}\right]$	$\left[{ }^{\circ}\right]$	

5.

Determine the magnitude of the voltage transfer factor for the two-port network shown in the figure. Measure the input voltage $\left(U_{1}\right)$ and the output voltage $\left(U_{2}\right)$ for the frequencies in the table. The circuit is powered through port 1, with port 2 being opencircuited. The amplitude set by the generator is 5 Vrms. The following resistors and capacitors are used for the circuit implementation: $\mathrm{R}=600 \Omega, \mathrm{C}_{1}=100 \mathrm{nF}, \mathrm{C}_{2}=100 \mathrm{nF}$.

f [kHz]	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
$U_{1}[\mathrm{~V}]$										
$U_{2}[\mathrm{~V}]$										
$\left\|H_{U 21 g}\right\|=\frac{U_{2}}{U_{1}}$										
$\left\|H_{U 21 g}\right\|_{\text {teoretic }}$										

6. Determine the phase of the voltage transfer factor for the two-port network shown in the figure. The circuit is powered through port 1, with port 2 being open-circuited. The amplitude set by the generator is 5 Vrms . The following resistors and capacitors are used for the circuit implementation: $\mathrm{R}=600 \Omega, \mathrm{C}_{1}=100 \mathrm{nF}, \mathrm{C}_{2}=100 \mathrm{nF}$.

(| | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}[\mathrm{kHz}]$ | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 | 3,5 | 4 | 4,5 | 5 |
| Δt | | | | | | | | | | |
| φ [grade] | | | | | | | | | | |
| $\varphi_{\text {teoretic } \text { [grade] }}$ | | | | | | | | | | |

