
Sampling of analog signals 

 

1. Real and ideal sampling 

Consider the principle module of a sampling circuit, as shown in figure 1, consisting of a 

switch which lets the analogue signal ( )ax t  pass from input to output for very short intervals,  , 

around times t nT= , by closing the switch K . 
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Figure 1 Ideal sampling circuit 

 

Figure 2 shows the time variations of the analogue input signal and the sampled output 

signal. 
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Figure 2 . ( )ax t -analogue signal at sample circuit input, ( )ex t -sampled signal (sample circuit output 

result) 



The sampled signal can be useful for multiple use of the transmission path. In the breaks 

between its pulses, the telecommunications path becomes clear, and samples of other analog 

signals can be transmitted (time multiplexing). In order for this process to be as efficient as 

possible, it would be desirable that the duration T −  during which samples of the signal under 

consideration are not transmitted be as long as possible, i.e.  .  as short and T  as high as possible. 

 The reduction of pulse durations in the sampled signal is limited, among other things, by 

increasing, beyond acceptable limits, the frequency bandwidth occupied by this signal (according 

to the property of expansion or contraction in time or frequency of the Fourier transform of analog 

signals). 

 On the other hand, if the sampling period becomes too long, different analogue signals may 

occur, which means that the sampled signal will no longer represent only a certain analogue signal, 

which will therefore not be able to be unequivocally restored at reception from its samples. 

 

2. Sampling theorem 

The discrete signal [ ]x n ,resulting from analogue signal sampling ( )ax t  ,is defined: 

  ( ) ( )e ax n x nT x nT= = . 

 Denoting ( )aX   Fourier transform of analog signal ( )ax nT , one can write the Fourier 

transform of the discrete signal: 
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 In this process, two distinct situations can arise, depending on whether in the discrete signal 

spectrum the areas where the different frequency-shifted replicas of the nonzero-value analog 

signal spectrum overlap or not, as illustrated in the following figure. 

 In the analogue signal spectrum, it was considered to have an effective frequency band 

limited to a maximum value Mf  (or 2M Mf = ). 

 The two situations mentioned, 
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   = , are illustrated in 

Figure 3. 
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Figure 3 a. ( )aX   Fourier transform of analog signal, b.Fourier transform modulus of discrete signal for 

M
T


  , c.Fourier transform modulus of discrete signal for M

T


   

 

It is found that, if M
T


  , from the spectrum of the discrete signal can be separated a 

portion in which it is proportional to the spectrum of the analog signal. Consequently, using a low-



pass filter with cutting pulsation 
T


, one can univocally recover the analog signal from its samples, 

because: 
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In the latter case, M
T


  , this procedure is no longer applicable due to the partial overlap 

between the spectrum of the analogue signal and its replicas shifted on the frequency axis. 

 

 The fact that in the first case the signal ( )ax t  can be obtained, by low-pass filtering, from 

the discrete signal  x n , assumes that ( )ax t  may be reconstituted from its samples ( )ax nT  

through an integration formula. 
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Knowing that the Fourier transform in the case of discrete signals (TFSD), with ideal samples, 

taken at times nt nT= , of analog signals is: 
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When the sum converges for   , it follows: 
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Substituting ( ) ( )ax nT x nT=  and changing the order of integration and summation operations, 

ensue: 
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 A non-periodic analog signal, limited bandwidth, at a maximum frequency 
Mf , is fully 

defined by samples extracted at discrete times ,nT n , if the sampling period T  is less than 

1
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=  is at least twice the maximum frequency in the analogue signal 

spectrum ( )2 MF f . This statement constitutes the sampling theorem (Shannon's theorem), and 

the value 2 Mf  is referred to as the Nyquist sampling cut-off frequency. 

 

 

Example 1 

a. Using Matlab generate the discrete sequence 𝑥[𝑛] obtained from the signal 𝑥(𝑡) =

cos (2𝜋𝐹1𝑡) of frequency 𝐹1 = 3𝑘𝐻𝑧 and duration 𝑡𝑚𝑎𝑥 = 100 ms, by sampling it with frequency 

𝐹𝑠 = 8𝑘𝐻𝑧. 

b. Plot the amplitude spectrum of TFSD in unnormed frequencies 𝐹 ∈ [0,8) [kHz] using 

the fft() function. Why do we have components at 3kHz and 5kHz? 

c. Redo subpoint b using the fftshift() function for 𝐹 ∈ [−4,4) [kHz]. Why do we have 

components at -3kHz and 3kHz in this case? 

clc; clear; close all 
F1 = 3000; 
Fs = 8000; % sampling frequency 
Ts = 1/Fs; % sampling period 
Tmax = 0.1; % signal duration 
t = 0: Ts: Tmax-Ts; % time vector 
signal = cos(2*pi*F1*t); 
 
nr_esantioane = length(signal); 
 
N = 64; %length of Fourier transform 
spectrum = fft(signal, N); % Fourier transform of sampled signal 
 
F = 0:Fs/N :Fs-Fs/N; 
figure(1),stem(F,abs(spectrum),grid 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 
title('Signal spectrum'); 
 
F = -Fs/2: Fs/N :Fs/2-Fs/N; 
figure(2),stem(F,fftshift(abs(spectrum)),grid 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 
title('Signal spectrum'); 



 

 

Figure 4 signal spectrum using fft(), signal spectrum using fftshift() 

 

Example 2 

Using Matlab represent in the signal time domain 𝑥(𝑡), the sampled signal with the 

frequency 1000 Hz 𝑥(𝑡)  and the signal ( )ax t  restored from its samples 

𝑥(𝑡) = {
cos(2π ∙ 100 ∙ t) , 0 < 𝑡 < 100 ms

0, otherwise
 

 

clear all 
close all 
clc 
 
Fs=1000; % sampling frequency 



Ts=1/Fs; % sampling period 
Tmax=0.1; % signal duration 
Nmax=Tmax*Fs; 
 
F=100;  
td=0:Ts:Tmax; 
sd=cos(2*pi*F*td); 
 
figure(1),plot(td,sd),grid 
xlabel('time(s)'); 
ylabel('Amplitude'); 
title('analogue signal'); 
 
figure(2),stem(td,sd),grid 
xlabel('time(s)'); 
ylabel('Amplitude'); 
title('sample signal'); 
 
ta=0:0.000001:Tmax; 
for n=0:Nmax-1 
    H(:,n+1)=sd(n+1)*2*sin(pi*Fs*(ta-n*Ts))./(ta-n*Ts); 
End 
 
sa=Ts/(2*pi)*sum(H,2); 
figure(3),plot(ta,sa),grid 
xlabel('time(s)'); 
ylabel('Amplitude'); 
title('signal restored'); 

 

 



 

 

Figure 5 analogue signal, sampled signal, signal restored from its samples 

 

Exercise 1 

a. Using Matlab generate the discrete sequence 𝑥[𝑛] obtained from the signal 𝑥(𝑡) =

cos(π ∙ 𝐹1 ∙ t) + 2 cos(2π ∙ 𝐹1 ∙ t) , 𝑜𝑓 frequency  𝐹1 = 3𝑘𝐻𝑧 and duration 𝑡𝑚𝑎𝑥 = 100 ms , by 

sampling it with 𝐹𝑠 = 8𝑘𝐻𝑧 

b. Plot the amplitude spectrum of TFSD in unnormed frequencies 𝐹 ∈ [0,8) [kHz] using 

the fft() function. 

c. Redo subpoint b using the fftshift() function for 𝐹 ∈ [−4,4) [kHz]. 

 

 

 



Exercise 2 

Repeat example 2 for the 𝑥(𝑡) 800Hz sampled signal: 

𝑥(𝑡) = {
2 ∗ cos(2π ∙ 50 ∙ t) + 2 ∗ cos(2π ∙ 25 ∙ t) , 0 < 𝑡 < 100 ms

0, otherwise  
 

Exercise 3 

a. Generate the discrete signal x[n] obtained by sampling xa(t) with sampling frequency Fs 

= 30 kHz, T = 1/F0, F0 = 3.5 kHz, acquisition duration Tmax = 10ms, A = 3. 

 

b. Plot with the stem function (abscissa according to n) the discrete signal x[n] . 

c. Plot with the plot function (abscissa as a function of time in milliseconds) the analog x(t) 
signal restored by analog digital conversion from discrete signal. 

d. Determine: the total number of samples L for x[n] and the number of samples N in a 

period T. How many periods k are included in the acquisition duration Tmax. 

e. Calculate the TFSD of the x[n] signal  over a number of points equal to the length Nfft 

1024 

a. Plot the amplitude and phase spectrum in non-standard frequencies F in the range 

[0,Fs) [kHz] 

i. Determine on the graph the fundamental harmonic corresponding to the 

fundamental frequency F0 as well as the frequencies Fn corresponding to 

the harmonics. At what frequencies do harmonic components occur? 

ii. Determine on the graph the amplitudes of spectral components 

corresponding to the continuous component, fundamental F0 and 

harmonics. What relationship is there between the amplitude A of the 

signal and the amplitudes measured on the graph? 

f. Perform a function that calculates the fill factor of the rectangular signal  

Exercise 4 

Generate the discrete x[n] signal obtained by sampling an analogue audio.  

[x, Fs] = audioread('f2bjrop1.0.wav'); 
 

a. Listen to the signal using the function: sound(x,Fs) 

b. Calculate the TFSD of the x[n] signal over a number of points equal to the length Nfft 1024 

and plot the amplitude spectrum in non-standard frequencies F in the range [0,Fs) [kHz] 



c. Generate a sine wave signal w of amplitude 0.005 of frequency Fsin large enough not to 

overlap with the spectral components of the audio signal (Fmin<<Fsin<Fs/2), of the same 

dimensions as the x[n] signal 

d. Add this w signal on top of the original signal, x_new 

e. Calculate the TFSD of the signal x_new[n] over a number of points equal to the length Nfft 

1024 and plot the amplitude spectrum in non-standard frequencies F in the range [0,Fs) 

[kHz] 

a. You can identify the spectrum position of the added signal 

f. Listen to the new signal. Can you hear the added signal? 
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